Wasser als Metall an BESSY II nachgewiesen

Nach etwa 5 Sekunden hat sich ein dünner Film aus metallischem Wasser um den NaK-Tropfen gebildet, erkennbar am goldenen Schimmer.

Nach etwa 5 Sekunden hat sich ein dünner Film aus metallischem Wasser um den NaK-Tropfen gebildet, erkennbar am goldenen Schimmer. © HZB

Das Bild oben links zeigt einen NaK-Tropfen im Vakuum ohne Wasserdampf. Die weiteren Bilder zeigen die zeitliche Entwicklung dieses Tropfens, wenn Wasserdampf pr&auml;sent ist. So bildet sich zun&auml;chst eine goldfarbene Schicht aus metallischem Wasser, dann entstehen wei&szlig;e Flecken aus Alkalihydroxid. Nach etwa 10 Sekunden f&auml;llt der Tropfen. <br /><br />

Das Bild oben links zeigt einen NaK-Tropfen im Vakuum ohne Wasserdampf. Die weiteren Bilder zeigen die zeitliche Entwicklung dieses Tropfens, wenn Wasserdampf präsent ist. So bildet sich zunächst eine goldfarbene Schicht aus metallischem Wasser, dann entstehen weiße Flecken aus Alkalihydroxid. Nach etwa 10 Sekunden fällt der Tropfen.

© HZB/Nature 10.1038/s41586-021-03646-5

In der Probenkammer tropft die NaK-Legierung aus einer D&uuml;se. Dabei str&ouml;mt Wasserdampf ein und bildet eine d&uuml;nne Haut an der Tropfenoberfl&auml;che.

In der Probenkammer tropft die NaK-Legierung aus einer Düse. Dabei strömt Wasserdampf ein und bildet eine dünne Haut an der Tropfenoberfläche. © HZB

Reines Wasser ist unter Normalbedingungen ein nahezu perfekter Isolator. Metallische Eigenschaften entwickelt Wasser nur unter extremem Druck, wie er höchstens im Innern von großen Planeten herrscht. Nun hat eine internationale Kooperation mit einem ganz anderen Ansatz metallisches Wasser erzeugt und den Phasenübergang an BESSY II dokumentiert. Die Arbeit ist in Nature publiziert.

Dass Wasser Strom leitet, weiß jedes Kind – aber damit ist das „normale“ Alltagswasser gemeint, das Salze enthält. Reines, destilliertes Wasser dagegen ist ein nahezu perfekter Isolator. Es besteht aus H2O-Molekülen, die über Wasserstoffbrückenbindungen miteinander locker vernetzt sind. Dabei bleiben die Valenzelektronen gebunden und sind nicht mobil. Um ein Leitungsband mit frei beweglichen Elektronen zu erzeugen, müsste man Wasser so stark unter Druck setzen, dass sich die Orbitale der Außenelektronen überlappen. Eine Berechnung zeigt jedoch, dass dieser Druck allenfalls im Inneren von großen Planeten wie Jupiter vorhanden ist.

Alkalimetalle als Elektronenspender

Eine internationale Kooperation aus 15 Wissenschaftler*innen an elf Forschungseinrichtungen hat nun mit einem völlig anderen Ansatz erstmals eine Wasserlösung mit metallischen Eigenschaften erzeugt und diesen Phasenübergang an BESSY II dokumentiert. Sie experimentierten dafür mit Alkalimetallen, die ihr äußeres Elektron sehr leicht abgeben.

Ein raffinierter Trick

Die Chemie zwischen Alkalimetallen und Wasser ist jedoch bekanntlich explosiv. Natrium oder andere Alkalimetalle fangen in Wasser sofort an zu brennen. Das Team fand aber einen Weg, um diese heftige Chemie in Schach zu halten: Sie warfen nicht ein Stückchen Alkalimetall in Wasser, sondern sie machten es umgekehrt: sie gaben ein klein wenig Wasser auf einen Tropfen aus Alkalimetall.

Die Haut aus Wasser

Sie nutzten dafür eine Natrium-Kalium-Legierung, die bei Raumtemperatur flüssig ist. Am Strahlrohr U49/2 am BESSY II bauten sie das Experiment in der Hochvakuum-Probenkammer SOL³PES auf. In der Probenkammer sitzt eine sehr feine Düse, aus der die flüssige Na-K-Legierung tropft. Der silberne Tropfen wächst dabei etwa 10 Sekunden, bis er sich von der Düse löst. Während der Tropfen wächst, strömt etwas Wasserdampf in die Probenkammer und bildet an der Oberfläche des Tropfens eine extrem dünne Haut, eine Schicht aus wenigen Lagen Wassermolekülen. Dabei wandern fast sofort Elektronen und Metall-Ionen von der Alkali-Legierung ins Wasser ein. Diese eingewanderten Elektronen verhalten sich dabei wie freie Elektronen in einem Leitungsband.

Von Silber zu Gold

„Man sieht den Phasenübergang zum metallischen Wasser mit bloßem Auge! Der silbrige Natrium-Kalium-Tropfen überzieht sich mit einem goldenen Schimmer, das ist sehr eindrucksvoll“, berichtet Dr. Robert Seidel, der die Experimente an BESSY II betreut hat. Die dünne Schicht aus goldfarbenem metallischem Wasser bleibt für einige Sekunden sichtbar. Dadurch konnte das Team um Prof. Pavel Jungwirth, Tschechische Akademie der Wissenschaften, Prag, mit spektroskopischen Analysen am BESSY II und am IOCB in Prag nachweisen, dass es sich tatsächlich um Wasser in einem metallischen Zustand handelt.

Nachweis der metallischen Phase

Die beiden entscheidenden Fingerabdrücke einer metallischen Phase sind die Plasmonenfrequenz und das Leitungsband. Diese beiden Größen konnten die Gruppen mit optischer Reflexionsspektroskopie und Synchrotron-Röntgen-Photoelektronenspektroskopie ermitteln: Während die Plasmonenfrequenz der goldfarbenen, metallischen „Wasserhaut“ bei etwa 2,7 eV liegt (also im blauen Bereich des sichtbaren Lichts) besitzt das Leitungsband eine Breite von ungefähr 1,1 eV mit einer scharfen Fermikante. „Unsere Studie zeigt nicht nur, dass metallisches Wasser tatsächlich auf der Erde hergestellt werden kann, sondern charakterisiert auch die spektroskopischen Eigenschaften, die mit seinem schönen goldenen Metallglanz verbunden sind“, sagt Seidel.

Nature, 28.07.2021: Spectroscopic evidence for a gold-coloured metallic water solution

arö


Das könnte Sie auch interessieren

  • BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Science Highlight
    09.07.2024
    BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Feststoffbatterien können mehr Energie speichern und sind sicherer als Batterien mit flüssigen Elektrolyten. Allerdings halten sie nicht so lange und ihre Kapazität nimmt mit jedem Ladezyklus ab. Doch das muss nicht so bleiben: Forscherinnen und Forscher sind den Ursachen bereits auf der Spur. In der Fachzeitschrift ACS Energy Letters stellt ein Team des HZB und der Justus-Liebig-Universität Gießen eine neue Methode vor, um elektrochemische Reaktionen während des Betriebs einer Feststoffbatterie mit Photoelektronenspektroskopie an BESSY II genau zu verfolgen. Die Ergebnisse helfen, Batteriematerialien und -design zu verbessern.

  • HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Nachricht
    09.07.2024
    HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Auf der Suche nach dem perfekten Katalysator bekommt HZB-Forscher Robert Seidel nun Rückenwind – durch einen hochkarätigen ERC Consolidator Grant. In der Titelgeschichte stellen wir vor, warum die Röntgenquelle BESSY II für sein Vorhaben eine wichtige Rolle spielt.

  • Wertstoffe aus Abfall: Auf die richtigen Elektrolyte kommt es an
    Science Highlight
    01.07.2024
    Wertstoffe aus Abfall: Auf die richtigen Elektrolyte kommt es an
    Stellt man aus Biomasse Biodiesel her, fällt als Nebenprodukt Glycerin an. Bislang wird dieses Nebenprodukt jedoch wenig genutzt, obwohl es durch Oxidation in photoelektrochemischen Reaktoren (PEC) zu wertvolleren Chemikalien verarbeitet werden könnte. Der Grund dafür: geringe Effizienz und Selektivität. Nun hat ein Team um Dr. Marco Favaro vom Institut für Solare Brennstoffe am HZB den Einfluss der Elektrolyte auf die Effizienz der Glycerin-Oxidations-Reaktion in PEC-Reaktoren untersucht und Ergebnisse erhalten, die dabei helfen, effizientere und umweltfreundlichere Produktionsverfahren zu entwickeln.