BESSY II: Neue Einblicke in schaltbare MOF-Strukturen an den MX-Beamlines

Blick in einen MOF-Kristall am Beispiel von DUT-8. Die riesigen Poren sind klar erkennbar.</p> <p>

Blick in einen MOF-Kristall am Beispiel von DUT-8. Die riesigen Poren sind klar erkennbar.

© TU Dresden

Metallorganische Gerüstverbindungen (MOFs) finden breite Anwendung in Gasspeicherung, Stofftrennung, Sensorik oder Katalyse. Eine spezielle Klasse dieser MOFs hat nun ein Team um Prof. Dr. Stefan Kaskel, TU Dresden, an den MX-Beamlines von BESSY II untersucht. Es handelt sich um „schaltbare“ MOFs, die auf äußere Reize reagieren können. Ihre Analyse zeigt, wie das Verhalten des Materials mit Übergängen zwischen geordneten und ungeordneten Phasen zusammenhängt. Die Ergebnisse sind nun in Nature Chemistry publiziert.

Metallorganische Gerüstverbindungen (engl.: metal-organic framework compounds – MOFs) bestehen aus anorganischen und organischen Gruppen und zeichnen sich durch eine Unzahl an Poren aus, in die sich andere Moleküle einlagern können. Daher sind MOFs für viele Anwendungen interessant, beispielsweise für die Speicherung von Gasen, aber auch Stofftrennung, Sensorik oder Katalyse. Einige dieser MOF-Strukturen reagieren auf unterschiedliche Gastmoleküle , indem sie ihre Strukturen verändern. Sie gelten damit als schaltbar.

Dazu gehört auch „DUT-8“, ein Material, das nun an den MX-Beamlines von BESSY II untersucht wurde.  „MOF-Kristalle lassen sich an den MX-Beamlines sehr gut analysieren“, sagt HZB-Experte Dr. Manfred Weiss, der das MX-Team leitet. „Denn MOF-Kristalle weisen viele Gemeinsamkeiten mit Proteinkristallen auf. So sind beide von großen Poren durchsetzt, die in den Proteinkristallen mit Flüssigkeit gefüllt sind, während die in den MOFs Gastmolekülen Raum bieten" erläutert Weiss.

„Die Beugungsdiagramme, die DUT-8 an den HZB-MX-Strahlrohren zeigte, waren äußerst komplex. Wir konnten dies nun auf diverse Übergänge zwischen geordneten und weniger geordneten Phasen zurückführen“, erläutert Stefan Kaskel. "Dabei dirigiert das eingeschlossene Gastmolekül das Netzwerk in eine von über tausend möglichen Fehlordnungskonfigurationen." 

Die Ergebnisse tragen dazu bei, Schaltprozesse und Gasaustauschreaktionen in solchen MOF-Strukturen besser zu verstehen, so dass künftige funktionale MOF-Materialien zielgerichtet entwickelt werden können.

Die Untersuchungen wurden durch das DFG-Programm (FOR2433) unterstützt.

red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Perowskit-Solarzellen: Neue BMBF-Nachwuchsgruppe am HZB
    Nachricht
    14.03.2025
    Perowskit-Solarzellen: Neue BMBF-Nachwuchsgruppe am HZB
    Im Projekt COMET-PV will Dr. Artem Musiienko die Entwicklung von Perowskit-Solarzellen deutlich beschleunigen. Dabei setzt er auf Robotik und KI, um die vielfältigen Variationen in der Materialzusammensetzung von Zinnbasierten Perowskiten zu analysieren. Der Physiker wird am HZB eine Nachwuchsgruppe (Young Investigator Group) aufbauen. Darüber hinaus wird er an der Fakultät Physik der Humboldt-Universität zu Berlin auch Lehrverpflichtungen übernehmen.
  • Strategisches Positionspapier zur Stärkung der Solarindustrie
    Nachricht
    06.03.2025
    Strategisches Positionspapier zur Stärkung der Solarindustrie
    Frankfurt, 06. März 2025 – Die führenden deutschen Solarforschungseinrichtungen, die Fachabteilung „Photovoltaik Produktionsmittel“ des Industrieverbands VDMA und das Produktionsplanungs-Unternehmen RCT Solutions, haben ein gemeinsames Positionspapier zur Stärkung der deutschen und europäischen Solarindustrie veröffentlicht. Dieses wird nun an die Parteien übermittelt, die nach der Bundestagswahl im Bundestag vertreten sind. Ziel ist es, die vorgeschlagenen Maßnahmen in die Koalitionsverhandlungen einzubringen und damit die Grundlage für eine widerstandsfähige und wettbewerbsfähige Solarindustrie in Deutschland zu schaffen.
  • Mesoporöses Silizium: Halbleiter mit neuen Talenten
    Science Highlight
    25.02.2025
    Mesoporöses Silizium: Halbleiter mit neuen Talenten
    Silizium ist das bekannteste Halbleitermaterial. Doch eine gezielte Nanostrukturierung kann die Materialeigenschaften drastisch verändern. Ein Team am HZB hat mit einer eigens entwickelten Ätzapparatur nun mesoporöse Siliziumschichten mit unzähligen winzigen Poren hergestellt und ihre elektrische Leitfähigkeit sowie Thermokraft untersucht. Die Forschenden haben damit erstmals aufgeklärt, wie der elektronische Transport in diesem mesoporösen Silizium funktioniert. Das Material hat großes Potenzial für Anwendungen und könnte auch Qubits für Quantencomputer thermisch isolieren.