BESSY II: Ein- und Auswanderung von Gastatomen in nanoporöser Speicherstruktur direkt beobachtet

Aus den Messdaten konnte das Team ermitteln, dass die Xenon-Atome zunächst einlagig die Innenwände der Poren auskleiden (Zustand 1), bevor sie sie auffüllen (Zustand 2). Der Röntgenstrahl dringt hier von unten durch die Probe.

Aus den Messdaten konnte das Team ermitteln, dass die Xenon-Atome zunächst einlagig die Innenwände der Poren auskleiden (Zustand 1), bevor sie sie auffüllen (Zustand 2). Der Röntgenstrahl dringt hier von unten durch die Probe. © M. Künsting/HZB

Batterieelektroden, Gas-Speicher und einige heterogene Katalysatormaterialien besitzen winzige Poren, die Raum für Atome, Ionen oder Moleküle bieten. Wie genau diese "Gäste" in die Poren einwandern, ist entscheidend für die Funktion solcher Energiematerialien, lässt sich aber meist nur indirekt beobachten. Nun hat ein Team mit dem HZB-ASAXS Instrument an der PTB Röntgen-Beamline von BESSY II mithilfe zweier Röntgenmethoden den Prozess der Einlagerung von Atomen in ein nanoporöses Modellsystem direkt beobachtet. Die Arbeit legt Grundlagen für neue Einblicke in Energiematerialien.

Batteriematerialien, neuartige Katalysatoren und Speichermaterialien für Wasserstoff haben eine Gemeinsamkeit: Sie besitzen häufig eine Struktur aus winzigen Poren im Nanometerbereich. Diese Poren bieten Platz für Gastatome, Ionen oder Moleküle, dabei können sich ihre Eigenschaften durch den Einschluss in die Poren dramatisch verändern. Für innovative Energiematerialien sind die Prozesse in den Poren oft entscheidend, aber erst im Ansatz verstanden.

Welche Struktur bilden Fremdatome in den Poren?

Insbesondere ließ sich bisher zwar die Porenstruktur der Trägermaterialien durch gängige Röntgenstreumethoden gut charakterisieren. Dabei blieb jedoch verborgen, wie sich die Fremdatome genau einlagerten, und welche Morphologie oder Struktur sie dabei bildeten. Um das zu klären, hat ein Team aus dem HZB zusammen mit Kollegen der Uni Hamburg, der PTB und der Humboldt-Universität zu Berlin an der PTB-Röntgen-Beamline von BESSY II erstmals zwei verschiedene Röntgenmethoden mit einem Gasadsorbtionsprozess kombiniert. Damit gelang es ihnen, gezielt nur die Nanostruktur des „Füllmaterials“ sichtbar zu machen, und zwar sowohl während der Auffüllung der Poren als auch während ihrer Entleerung.

Modellsystem: Nanoporöses Silizium mit Xenon

Sie testeten das Verfahren an einem Modellsystem aus nanoporösem Silizium. In einer speziell angefertigten Physisorptions-Zelle unter kontrollierten Bedingungen (Temperatur, Druck) wurde das Edelgas Xenon mit der Siliziumprobe in Kontakt gebracht. Die Probe untersuchten sie simultan mit Anomaler Röntgen-Kleinwinkelstreuung (ASAXS) und Röntgenspektroskopie (XANES): Dabei wird die Energie des Röntgenstrahls in der Nähe der Röntgenabsorptionskante der Xenon-Atome variiert.

Zunächst: Auskleidung der Innenwände

Sie konnten so Schritt für Schritt erfassen, wie Xenon in die Poren einwandert, und beobachten, dass die Atome zunächst eine einatomare Lage an den inneren Oberflächen der Poren bilden. Danach werden weitere Lagen angebaut, bis die Poren gefüllt sind. Dabei lassen sich Füllung und Entleerung strukturell unterscheiden.

Mathematische Ermittlung

„Mit konventioneller Röntgenstreuung (SAXS) sieht man nur das poröse Material und die gefüllten Bereiche gemeinsam, sodass die Beiträge der Füllstoffe bei hoher Füllung kaum sichtbar sind“, sagt Eike Gericke, Erstautor der Studie, der über die Röntgenverfahren promoviert. „Das haben wir verändert, indem wir ASAXS genutzt und an der Röntgenabsorptionskante von Xenon gemessen haben. An dieser Kante ändern sich die Wechselwirkungen zwischen Xenon und dem Röntgenstrahl, so dass wir das Füllmaterial Xenon mathematisch extrahieren können.“

Neues Werkzeug für die Entwicklung von Energiematerialien

„Wir haben damit erstmals direkten Zugang zu einem Bereich, über den man zuvor nur Vermutungen anstellen konnte“, erläutert Dr. Armin Hoell, korrespondierender Autor der Arbeit. „Die Anwendung der Kombination dieser beiden Röntgenmethoden auf den Prozess macht es nun möglich, das Verhalten von eingeschlossener Materie in Nanostrukturen experimentell zu beobachten. Das ist ein neues, mächtiges Werkzeug, um auch tiefere Einblicke in Batterieelektroden, Katalysatoren oder Wasserstoff-Speichermaterialien zu gewinnen.“

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Science Highlight
    04.11.2024
    BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.
  • Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Science Highlight
    28.10.2024
    Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.