Virtuelle Rundgänge: Erleben Sie das HZB in 360 Grad!
Leider können wir zurzeit Corona-bedingt keine Besuchergruppen am HZB empfangen. Trotzdem wollen wir für Sie erlebbar bleiben! Folgen Sie einfach unseren Rundgängen in 360 Grad und erleben Sie, wie wir am Beschleuniger BESSY II forschen. Weitere Rundgänge sind in Planung.
„Machen Sie es sich gemütlich und starten Sie Ihren eigenen virtuellen Rundgang durch unsere Welt der Forschung! Wir laden Sie ein, sich durch die 360-Grad-Welten zu bewegen und an der ein oder anderen Station zu verweilen, um Neues zu entdecken“, sagt Sandra Fischer aus der Abteilung Kommunikation. Sie hat zusammen mit einem externen Partner die Rundgänge konzipiert und realisiert.
Den Auftakt macht eine Tour durch die Beschleunigeranlage BESSY II. Weitere Rundgänge, auch am Standort Wannsee, sind in Planung. „Wir wollen mit diesem Angebot in Pandemie-Zeiten ein stückweit für interessierte Menschen geöffnet bleiben und Neugier auf die Welt der Wissenschaft wecken.“
Tour durch den Beschleuniger BESSY II: Folgen Sie dem Weg des Lichts
Wollten Sie immer schon mal durch einen Beschleuniger gehen? Die Touren „Der Weg des Lichts“ und „Das Experiment“ starten beide im Herzen von BESSY II, dem Kontrollraum. Begeben Sie sich an den Ort, an dem die Elektronen mit beinahe Lichtgeschwindigkeit durchrasen und Licht aussenden – den Speicherringtunnel. Dort sehen Sie, welchen Aufwand man betreiben muss, um das begehrte Licht zu erzeugen. Was wir mit diesem Licht alles erforschen können, erleben Sie in der Tour „Das Experiment“.
Hier geht's zu den Rundgängen. Wir wünschen Ihnen viel Spaß dabei!
Hinweis für unsere Kooperationspartner an BESSY II:
In der Mediathek stehen für Sie 360-Grad-Ansichten („Kugelpanoramen“) verschiedener Experimentierbereiche zur Verfügung. Sie können diese gern zur Erklärung Ihrer Arbeit verwenden (z.B. in Vorträgen oder für Besuchergruppen). Bei Fragen wenden Sie sich an Sandra Fischer.
sz
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=22684;sprache=de
- Link kopieren
-
Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
Im Jahr 2023 erzeugten Photovoltaikanlagen weltweit mehr als 5% der elektrischen Energie und die installierte Leistung verdoppelt sich alle zwei bis drei Jahre. Optische Technologien können die Effizienz von Solarmodulen weiter steigern und neue Einsatzbereiche erschließen, etwa in Form von ästhetisch ansprechenden, farbigen Solarmodulen für Fassaden. Nun geben 27 Fachleute einen umfassenden Überblick über den Stand der Forschung und eine Einschätzung, welche Innovationen besonders zielführend sind. Der Bericht, der auch für Entscheidungsträger*innen in der Forschungsförderung interessant ist, wurde von Prof. Christiane Becker und Dr. Klaus Jäger aus dem HZB koordiniert.
-
Katalyseforschung mit dem Röntgenmikroskop an BESSY II
Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.
-
BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
Eine blütenförmige Struktur aus einer Nickel-Eisen-Legierung, die nur wenige Mikrometer misst, kann Magnetfelder lokal verstärken. Der Effekt lässt sich durch die Geometrie und Anzahl der „Blütenblätter“ steuern. Das magnetische Metamaterial wurde von der Gruppe um Dr. Anna Palau am Institut de Ciencia de Materials de Barcelona (ICMAB) mit Partnern aus dem CHIST-ERA MetaMagIC-Projekts entwickelt und nun an BESSY II in Zusammenarbeit mit Dr. Sergio Valencia untersucht. Die Mikroblüten ermöglichen vielfältige Anwendungen: Sie können die Empfindlichkeit magnetischer Sensoren erhöhen, die Energie für die Erzeugung lokaler Magnetfelder reduzieren, und am PEEM-Messplatz an BESSY II die Messung von Proben unter deutlich höheren Magnetfeldern ermöglichen.