Neue Talente von Graphen: Durchstimmbare Gitterschwingungen

</p> <p>Die Elektronenmikroskopie zeigt die Graphenprobe (grau), in der der Heliumstrahl ein Lochmuster erzeugt hat, so dass die Dichte periodisch variiert. Dadurch kommt es zur &Uuml;berlagerung von Schwingungsmoden und es &ouml;ffnet sich eine mechanische Bandl&uuml;cke. Die Frequenz dieses phononischen Systems l&auml;sst sich durch mechanische Spannung zwischen 50 MHz und 217 MHz einstellen.&nbsp;</p> <p>

Die Elektronenmikroskopie zeigt die Graphenprobe (grau), in der der Heliumstrahl ein Lochmuster erzeugt hat, so dass die Dichte periodisch variiert. Dadurch kommt es zur Überlagerung von Schwingungsmoden und es öffnet sich eine mechanische Bandlücke. Die Frequenz dieses phononischen Systems lässt sich durch mechanische Spannung zwischen 50 MHz und 217 MHz einstellen. 

© HZB

Technologische Innovationen im letzten Jahrhundert basierten hauptsächlich auf der Kontrolle von Elektronen oder Photonen – im aufstrebenden Forschungsfeld der Phononik geraten nun auch die Schwingungen des Kristallgitters, die Phononen, ins Blickfeld. Ein Team der Freien Universität Berlin und des Helmholtz-Zentrums Berlin hat Graphen mit einem Helium-Ionen-Mikroskop mit einem Lochmuster versehen und dadurch einen phononischen Kristall erzeugt, dessen Resonanzfrequenz sich erstmals in einem breiten Bereich durchstimmen lässt. Dies ist ein echter Durchbruch, der nun im Fachjournal Nano Letters publiziert ist.

Ohne Elektronik und Photonik gäbe es keine Computer, Smartphones, Sensoren und die Informations- und Kommunikationstechnologien wären nicht entstanden. In den kommenden Jahren könnte das neue Feld der Phononik diese Optionen noch beträchtlich erweitern. Denn nun sind auch Gitterschwingungen (Phononen) von Festkörpern ins Blickfeld der Forschung geraten. Um phononische Bauelemente zu realisieren, müsste man allerdings Gitterschwingungen genauso präzise steuern und kontrollieren können, wie es mit Elektronen oder Photonen möglich ist.

Phononische Kristalle als Schlüssel

Der Schlüsselbaustein hierzu ist ein phononischer Kristall, eine künstlich hergestellte Struktur, in der Eigenschaften wie Steifigkeit, Masse oder mechanische Spannung periodisch variieren. Es gibt bereits einige Kandidaten für phononische Bauelemente, die als akustische mechanische Qubits, Wellenleiter, Phononenlinsen und Vibrationsabschirmungen eingesetzt werden. Bisher operierten diese Systeme jedoch nur auf vorab festgelegten Schwingungsfrequenzen. Es war nicht möglich, die Schwingungsfrequenzen kontrolliert zu verändern.

Graphen mit Lochmuster

Nun hat ein Team der Freien Universität Berlin und am HZB erstmals konkret gezeigt, wie diese Kontrolle realisiert werden kann. Sie nutzten dafür Graphen, eine Kohlenstoff-Form, in der die Kohlenstoffatome sich zweidimensional zu einer wabenförmigen Struktur vernetzen.  Mit einem fokussierten Strahl aus Helium-Ionen konnte das Team im Graphen ein periodisches Muster aus Löchern schneiden. Diese Methode steht am CoreLab CCMS (Correlative Microscopy and Spectroscopy) zur Verfügung. „Wir mussten den Prozess optimieren, um ein regelmäßiges Lochmuster in die Graphenfläche zu schneiden, ohne dass sich benachbarte Löcher berühren“, erklärt Dr. Katja Höflich, Gastforscherin am HZB und Gruppenleiterin am Ferdinand-Braun-Institut Berlin. 

Durchstimmbar von 50 MHz bis 217 MHz

Jan N. Kirchhof, Erstautor der nun in Nano Letters publizierten Studie, hat die Schwingungseigenschaften dieses phononischen Kristalls berechnet. Seine Simulationen zeigen, dass in einem bestimmten Frequenzbereich keine Schwingungsmoden zugelassen sind. Die Fachleute bezeichnen dies als mechanische Bandlücke, ein in der Festkörperphysik bekanntes Konzept. Diese Bandlücke kann genutzt werden, um einzelne Moden zu lokalisieren und von der Umgebung abzuschirmen. Das Besondere hier: „Die Simulation zeigt, dass wir das phononische System schnell und gezielt durchstimmen können, von 50 Megahertz bis 217 Megahertz, indem wir durch eine angelegte elektrische Spannung mechanischen Druck generieren“, sagt Jan Kirchhof.  

Neue Anwendungen im Blick

"Wir hoffen, dass unsere Ergebnisse das Feld der Phononik weiter vorantreiben. Wir erwarten, dass wir einige grundlegende physikalische Erkenntnisse gewinnen und Technologien entwickeln, die zu Anwendungen z.B. in ultrasensitiven Photosensoren oder sogar Quantentechnologien führen könnten", erklärt Prof. Kirill Bolotin, Leiter der FU-Arbeitsgruppe. In seiner Gruppe laufen bereits die ersten Experimente mit den neuen phononischen Kristallen aus dem HZB.

arö


Das könnte Sie auch interessieren

  • Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Science Highlight
    24.06.2024
    Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Ein Team um Dr. Ioanna Mantouvalou hat eine Methode entwickelt, um die Verteilung von chemischen Elementen in Dentalmaterialien präziser als bisher möglich darzustellen. Die konfokale mikro-Röntgenfluoreszenzanalyse (micro-XRF) liefert dreidimensional aufgelöste Elementbilder, die Verzerrungen enthalten. Sie entstehen, wenn Röntgenstrahlen Materialien unterschiedlicher Dichte und Zusammensetzung durchdringen. Mit Mikro-CT-Daten, die detaillierte 3D-Bilder der Materialstruktur liefern, und chemischen Informationen aus Röntgenabsorptionsspektroskopie (XAS) - Experimenten im Labor (BLiX, TU Berlin) und an der Synchrotronstrahlungsquelle BESSY II haben die Forschenden das Verfahren nun verbessert.
  • Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Nachricht
    19.06.2024
    Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Am 17. Juni 2024 ist in Jena das Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) im Beisein von Wolfgang Tiefensee, Minister für Wirtschaft, Wissenschaft und Digitale Gesellschaft des Freistaates Thüringen, feierlich eröffnet worden. Das Institut wurde vom Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) in Kooperation mit der Friedrich-Schiller-Universität Jena gegründet: Es widmet sich der Entwicklung nachhaltiger Polymermaterialien für Energietechnologien. Diese sollen eine Schlüsselrolle bei der Energiewende spielen und Deutschlands Ziel unterstützen, bis 2045 klimaneutral zu werden.
  • „Forschung und Entwicklung ist auch in Kriegszeiten entscheidend!“
    Interview
    18.06.2024
    „Forschung und Entwicklung ist auch in Kriegszeiten entscheidend!“
    Am 11. und 12. Juni fand die Ukraine Recovery Conference in Berlin statt. Begleitend diskutierten Vertreter*innen von Helmholtz, Fraunhofer und Leibniz, wie Forschung zu einem nachhaltigen Wiederaufbau der Ukraine beitragen kann. In diesem Interview spricht Bernd Rech, wissenschaftlicher Geschäftsführer am HZB, über die Bedeutung von Forschung während des Krieges und Projekten wie Green Deal Ukraina.