Wie sich komplexe Schwingungen in einem Quantensystem mit der Zeit vereinfachen

Die Verteilung der Phononen ist zunächst komplex (obere Kurven) und vereinfacht sich mit der Zeit zu einer Gausschen Glockenkurve (untere Kurve).

Die Verteilung der Phononen ist zunächst komplex (obere Kurven) und vereinfacht sich mit der Zeit zu einer Gausschen Glockenkurve (untere Kurve). © S. Sotiriadis / Freie Universität Berlin

Mit einem raffinierten Experiment haben Physiker gezeigt, dass sich in einem eindimensionalen Quantensystem die zunächst komplexe Verteilung von Schwingungen oder Phononen mit der Zeit in eine einfache Gaußsche Glockenkurve verwandeln kann. Das Experiment fand an der Technischen Universität Wien statt, während die theoretischen Überlegungen von einer gemeinsamen Forschergruppe der Freien Universität Berlin und des HZB durchgeführt wurden.

Die Quantenphysik erlaubt es, Aussagen über das Verhalten verschiedenster Vielteilchensysteme auf atomarer Ebene zu treffen, vom Salzkristall bis zum Neutronenstern. In Quantensystemen haben viele Parameter keine konkreten Werte, sondern sind über verschiedene Werte mit bestimmten Wahrscheinlichkeiten verteilt. Oft hat diese Verteilung die Form einer einfachen Gauß'schen Glockenkurve, wie sie auch in klassischen Systemen anzutreffen ist, z. B. die Verteilung der Kugeln im Zufallsbrett (Galton-Nagelbrett). Allerdings folgen nicht alle Quantensysteme diesem einfachen Verhalten und einige können aufgrund von Wechselwirkungen von der Gaußverteilung abweichen.

Prof. Dr. Jens Eisert leitet an der Freien Universität Berlin und am Helmholtz-Zentrum Berlin eine gemeinsame Arbeitsgruppe für Theoretische Physik. Er argumentiert, dass solche Abweichungen mit der Zeit abklingen und gaußverteilt werden, sobald die Wechselwirkungen reduziert werden. Nun konnte er diese Vermutung experimentell untermauern.

Dazu arbeitete das Berliner Team mit einer Gruppe von Experimentalphysikern um Prof. Dr. Jörg Schmiedmayer von der Technischen Universität Wien zusammen. Schmiedmayer und Mitglieder seiner Gruppe, insbesondere Dr. Thomas Schweigler, präparierten ein sogenanntes Bose-Einstein-Kondensat: Dabei handelt es sich um ein Quantensystem aus mehreren tausend Rubidium-Atomen, die mit Hilfe von Magnetfeldern in einer quasi eindimensionalen Konfiguration eingeschlossen und nahe dem absoluten Nullpunkt (50 Nanokelvin) abgekühlt wurden.

"Die Wiener Gruppe hat ein synthetisches Quantensystem geschaffen, in dem die Verteilung der Phononen besonders scharf beobachtet werden kann", erklärt Dr. Marek Gluza, Koautor der Studie und Postdoc bei Jens Eisert. Die Messdaten bilden zunächst die komplexe Dynamik der Phononen ab. Doch die Komplexität geht mit der Zeit verloren und die Verteilung nimmt die Form einer Gaußschen Glockenkurve an.

"Tatsächlich können wir hier sehen, wie sich mit der Zeit eine Gauß-Verteilung herausbildet. Die Natur findet durch ihre physikalischen Gesetze ganz von selbst eine einfache Lösung", kommentiert Jens Eisert.

Das Einzigartige an dem durchgeführten Experiment ist, dass das System im Laufe der Zeit wieder zu der komplexeren Verteilung zurückschwingt. Die Signaturen des komplizierten Zustands tauchen wieder auf. "Wir wissen genau, warum es zurückschwingt und wovon es abhängt", erklärt Gluza. "Das zeigt uns etwas über die Isolation des Systems, denn die Information über die Signaturen hat das System nie verlassen".

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Nanoinseln auf Silizium mit schaltbaren topologischen Texturen
    Science Highlight
    20.01.2025
    Nanoinseln auf Silizium mit schaltbaren topologischen Texturen
    Nanostrukturen mit spezifischen elektromagnetischen Texturen versprechen Anwendungsmöglichkeiten für die Nanoelektronik und zukünftige Informationstechnologien. Es ist jedoch sehr schwierig, solche Texturen zu kontrollieren. Nun hat ein Team am HZB eine bestimmte Klasse von Nanoinseln auf Silizium mit chiralen, wirbelnden polaren Texturen untersucht, die durch ein externes elektrisches Feld stabilisiert und sogar reversibel umgeschaltet werden können.
  • Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Science Highlight
    08.01.2025
    Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Neue Einblicke in Lithium-Schwefel-Pouchzellen hat ein Team aus HZB und dem Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS) in Dresden an der BAMline von BESSY II gewonnen. Ergänzt durch Analysen im Imaging Labor des HZB sowie weiteren Messungen ergibt sich ein neues und aufschlussreiches Bild von Prozessen, die Leistung und Lebensdauer dieses industrierelevanten Batterietyps begrenzen. Die Studie ist im renommierten Fachjournal "Advanced Energy Materials" publiziert.

  • Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
    Science Highlight
    21.12.2024
    Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
    An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser eignet sich ein Molekül als molekularer Nanomagnet. Solche Nanomagnete besitzen eine Vielzahl von potenziellen Anwendungen, z. B. als energieeffiziente Datenspeicher. An der Studie waren Forschende aus dem Max-Planck-Institut für Kohlenforschung (MPI KOFO), dem Joint Lab EPR4Energy des Max-Planck-Instituts für Chemische Energiekonversion (MPI CEC) und dem Helmholtz-Zentrums Berlin beteiligt.