Grüner Wasserstoff: Auftrieb im Elektrolyten sorgt für Konvektionsströmung

Mit der Zeit ver&auml;ndert sich der lokale pH-Wert (hier in einem Elektrolyten mit 0.5 M K<sub>2</sub>SO<sub>4</sub>).

Mit der Zeit verändert sich der lokale pH-Wert (hier in einem Elektrolyten mit 0.5 M K2SO4). © HZB

Wasserstoff lässt sich klimaneutral mit Sonnenlicht produzieren. Aber auf dem Weg vom Labormaßstab zu einer großtechnischen Umsetzung gibt es noch Hürden. Nun hat ein Team am HZB eine Methode vorgestellt, um Strömungsprozesse im Elektrolyten sichtbar zu machen und mit einem Modell vorab zuverlässig zu simulieren. Die Ergebnisse sind hilfreich, um Design und Aufskalierung dieser Technologie zu unterstützen und wurden in der renommierten Zeitschrift Energy and Environmental Science veröffentlicht.

„Grüner“ Wasserstoff, der mit erneuerbaren Energien klimaneutral hergestellt wird, könnte einen wesentlichen Beitrag zum Energiesystem der Zukunft leisten. Eine Option ist die Nutzung von Sonnenlicht zur elektrolytischen Wasserspaltung, entweder indirekt durch Kopplung einer Solarzelle mit einem Elektrolyseur oder direkt in einer photoelektrochemischen (PEC) Zelle. Als Photoelektroden dienen lichtabsorbierende Halbleiter. Sie werden in eine Elektrolytlösung aus Wasser eingetaucht, das mit starken Säuren oder Basen vermischt ist. Dies erhöht die Konzentration von Protonen bzw. Hydroxidionen und sorgt so für eine effiziente Elektrolyse.

Effizienz versus Sicherheit

In einer Großanlage wäre es jedoch aus Sicherheitsgründen sinnvoll, eine Elektrolytlösung mit einem nahezu neutralen pH-Wert zu verwenden. Eine solche Lösung hat eine niedrige Konzentration von Protonen und Hydroxidionen, was zu Einschränkungen beim Massentransport und zu schlechter Leistung führt. Diese Einschränkungen genauer zu verstehen hilft bei der Konstruktion einer sicheren und skalierbaren PEC-Wasserspaltungsanlage.

Strömungen während der Elektrolyse

Ein Team um Dr. Fatwa Abdi vom HZB-Institut für Solare Brennstoffe hat nun zum ersten Mal untersucht, wie sich der flüssige Elektrolyt in der Zelle während der Elektrolyse verhält: Mit Hilfe fluoreszierender pH-Sensorfolien bestimmte Dr. Keisuke Obata, Postdoc in Abdis Team, den lokalen pH-Wert in PEC-Zellen zwischen Anode und Kathode im Verlauf der Elektrolyse. Die PEC-Zellen wurden mit nahezu neutralen pH-Elektrolyten gefüllt. In Bereichen nahe der Anode nahm der pH-Wert im Verlauf der Elektrolyse ab, während er nahe der Kathode zunahm. Interessanterweise bewegte sich der Elektrolyt während der Elektrolyse im Uhrzeigersinn.

Die Beobachtung lässt sich durch Auftrieb aufgrund von Änderungen der Elektrolytdichte während der elektrochemischen Reaktion erklären, die zur Konvektion führt. „Es war überraschend zu sehen, dass winzige Änderungen der Elektrolytdichte (~0,1%) diesen Auftriebseffekt verursachen", sagt Abdi.

Modell ermöglicht Simulation

Parallel dazu entwickelten Abdi und sein Team ein multiphysikalisches Modell zur Berechnung der Konvektionsströmung, die durch die elektrochemischen Reaktionen ausgelöst werden. „Wir haben dieses Modell gründlich getestet und können nun ein leistungsfähiges Werkzeug zur Verfügung stellen, um die natürliche Konvektion in einer elektrochemischen Zelle mit verschiedenen Elektrolyten im Voraus zu simulieren", sagt Abdi.

HEMF und UniSysCat

Für das Projekt hat Abdi ein neues Labor, das "Solar Fuel Devices Facility", am HZB aufgebaut. Dieses Labor ist Teil der Helmholtz Energy Materials Foundry (HEMF), einer großen Infrastruktur, die auch Messgäste aus aller Welt nutzen können. Die Studie wurde in Zusammenarbeit mit der TU Berlin im Rahmen des Exzellenzclusters UniSysCat durchgeführt.

„Mit dieser Arbeit erweitern wir unsere materialwissenschaftliche Expertise um neue Einblicke auf dem Gebiet der photoelektrochemischen Reaktionstechnik.  Das ist ein wesentlicher Schritt auf dem Weg zur Aufskalierung  von Solarbrennstoffanlagen", sagt Prof. Dr. Roel van de Krol, der das HZB-Institut für Solare Brennstoffe leitet.

Energy & Environmental Science (2020)

In-situ Observation of pH Change during Water Splitting in Neutral pH Conditions: Impact of Natural Convection Driven by Buoyancy Effects

Keisuke Obata, Roel van de Krol, Michael Schwarze, Reinhard Schomäcker, and Fatwa F. Abdi

DOI: 10.1039/D0EE01760D

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • „Deutschland muss seine ehrgeizigen Ziele im Blick behalten“
    Interview
    29.01.2025
    „Deutschland muss seine ehrgeizigen Ziele im Blick behalten“
    Das Wissenschaftsjahr 2025 widmet sich dem Thema „Zukunftsenergie“ und die Helmholtz-Gemeinschaft leistet im Forschungsbereich Energie dazu entsprechende Spitzenforschung.  Ein Gespräch mit Bernd Rech, Vizepräsident Energie der Helmholtz-Gemeinschaft und wissenschaftlicher Direktor am HZB zu Fragen wie: Wo steht Deutschland mit dem Umbau seines Energiesystems? Welchen Beitrag kann Forschung leisten? Und was ist mit Wasserstoff, Kernenergie und Kernfusion und den neuen Herausforderungen für eine sichere Versorgung in Zeiten von Cyberangriffen?
  • Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Science Highlight
    08.01.2025
    Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Neue Einblicke in Lithium-Schwefel-Pouchzellen hat ein Team aus HZB und dem Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS) in Dresden an der BAMline von BESSY II gewonnen. Ergänzt durch Analysen im Imaging Labor des HZB sowie weiteren Messungen ergibt sich ein neues und aufschlussreiches Bild von Prozessen, die Leistung und Lebensdauer dieses industrierelevanten Batterietyps begrenzen. Die Studie ist im renommierten Fachjournal "Advanced Energy Materials" publiziert.

  • Zwei Humboldt-Fellows am HZB
    Nachricht
    09.12.2024
    Zwei Humboldt-Fellows am HZB
    Zwei junge Wissenschaftler sind zurzeit als Humboldt-Postdoktoranden am HZB tätig. Kazuki Morita bringt seine Expertise in Modellierung und Datenanalyse in die Solarenergieforschung im Team von Prof. Antonio Abate ein. Qingping Wu ist Experte für Batterieforschung und arbeitet mit Prof. Yan Lu zusammen an Lithium-Metall-Batterien mit hoher Energiedichte.