Solarenergie: Cäsium-basierte anorganische Halogenid-Perowskite kartiert

Neun Proben mit unterschiedlicher Zusammensetzung: von reinem CsPbBr<sub>2</sub>I (Tinte 1, links) bis zu reinem CsPbI<sub>3</sub> (Tinte 2 rechts).

Neun Proben mit unterschiedlicher Zusammensetzung: von reinem CsPbBr2I (Tinte 1, links) bis zu reinem CsPbI3 (Tinte 2 rechts). © H. Näsström/HZB

Alle Proben werden im HySPRINT-Labor am HZB hergestellt.

Alle Proben werden im HySPRINT-Labor am HZB hergestellt. © H. Näsström/HZB

Forscherinnen und Forscher am HZB haben verschiedene Zusammensetzungen von Cäsium-basierten Halogenidperowskiten (CsPb(BrxI1-x)3 (0 ≤ x ≤ 1)) gedruckt und untersucht. In einem Temperaturbereich zwischen Raumtemperatur und 300 Celsius beobachten sie strukturelle Phasenübergänge, die die elektronischen Eigenschaften beeinflussen. Die Studie bietet eine schnelle und einfache Methode zur Bewertung neuer Zusammensetzungen von Perowskitmaterialien, um Kandidaten für Anwendungen in Dünnschichtsolarzellen und optoelektronischen Bauelementen zu identifizieren.

Hybridhalogenidperowskite (ABX3) haben sich in nur wenigen Jahren als hocheffiziente neue Materialien für Dünnschichtsolarzellen durchgesetzt. Das A steht für ein Kation, entweder ein organisches Molekül oder ein Alkalimetall, das B ist ein Metall, meistens Blei (Pb), und das X ist ein Element aus der Gruppe der Halogene wie Brom oder Iod. Derzeit erreichen einige Perowskit-Verbindungen Wirkungsgrade über 25 %. Darüber hinaus können die meisten Perowskit-Dünnschichten bei moderaten Temperaturen aus einer Lösung hergestellt werden, was sehr wirtschaftlich ist.

Anorganische Perowskit-Halbleiter

Weltrekordwirkungsgrade wurden von organischen Molekülen wie Methylammonium (MA) als A-Kation mit Blei und Jod oder Bromid an den anderen Standorten erreicht. Aber diese organischen Perowskite sind noch nicht sehr stabil. Anorganische Perowskite mit Cäsium am A-Standort versprechen höhere Stabilitäten: Allerdings sind einfache Verbindungen wie CsPbI3 oder CsPbBr3 entweder auch nicht sehr stabil oder bieten nicht die elektronischen Eigenschaften, die für Anwendungen in Solarzellen oder anderen optoelektronischen Geräten benötigt werden.

Systematische Variationen der Zusammensetzung

Nun hat ein Team am HZB Zusammensetzungen von CsPb(BrxI1-x)3 untersucht, die optische Bandlücken zwischen 1,73 und 2,37 eV bieten. Das macht diese Mischungen interessant für Anwendungen als Tandem-Bauelemente.

Tintenstrahldruckverfahren

Für die Herstellung verwendeten die Forscherinnen und Forscher ein neu entwickeltes Verfahren zum Drucken kombinatorischer Perowskit-Dünnschichten, um systematische Variationen von CsPb(BrxI1-x)3-Dünnschichten auf einem Substrat zu erzeugen. Dazu wurden zwei Druckköpfe entweder mit CsPbBr2I oder CsPbI3 gefüllt, und der Drucker programmiert, um aus jedem Druckkopf eine jeweils exakt bemessene Anzahl von Flüssigkeitströpfchen auf das Substrat zu drucken. Dadurch entstanden dünne Schichten der Proben mit der gewünschten Zusammensetzung, die im Anschluss noch weiteren Behandlungen unterzogen wurde.

Untersuchungen im LIMAX-Labor am HZB

Mit einer speziellen Hochintensitäts-Röntgenquelle, dem Liquid-Metaljet im LIMAX-Labor des HZB, wurde die kristalline Struktur der Perowskit-Dünnschichten bei verschiedenen Temperaturen von Raumtemperatur bis zu 300 Celsius analysiert. "Wir fanden, dass sich alle Zusammensetzungen bei hoher Temperatur in eine kubische Perowskit-Phase umwandeln", erklärt Hampus Näsström, Doktorand und Erstautor der Publikation. Erst beim Abkühlen gehen alle Proben in metastabile tetragonal und orthorhombisch verzerrte Perowskitphasen über, die sie für photovoltaische Anwendungen geeignet machen. "Dies hat sich als idealer Anwendungsfall der in-situ-Röntgenstrukturanalyse mit der laborgestützten hochbrillanten Röntgenquelle erwiesen", fügt Dr. Roland Mainz, Leiter des LIMAX-Labors, hinzu.

Absenkung der Prozeßtemperatur möglich

Da sich herausgestellt hat, dass die Übergangstemperaturen in die gewünschten Phasen mit steigendem Bromgehalt abnehmen, wäre es möglich, die Verarbeitungstemperaturen für anorganische Perowskit-Solarzellen weiter zu senken.

Systematisch Variationen testen

"Das Interesse an dieser neuen Klasse von Solarmaterialien ist enorm, und die möglichen Variationen in der Zusammensetzung sind nahezu unendlich. Diese Arbeit zeigt, wie ein breites Spektrum von Variationen systematisch hergestellt und bewertet werden kann", sagt Dr. Eva Unger, die die Nachwuchsgruppe Hybridmaterialbildung und Skalierung leitet. Dr. Thomas Unold, Leiter der Gruppe Kombinatorische Energie-Materialforschung, stimmt dem zu: „Dies ist ein Paradebeispiel dafür, wie Hochdurchsatzansätze in der Forschung die Entdeckung und Optimierung von Materialien in der zukünftigen Forschung enorm beschleunigen könnten".

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Science Highlight
    28.03.2025
    Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Im Jahr 2023 erzeugten Photovoltaikanlagen weltweit mehr als 5% der elektrischen Energie und die installierte Leistung verdoppelt sich alle zwei bis drei Jahre. Optische Technologien können die Effizienz von Solarmodulen weiter steigern und neue Einsatzbereiche erschließen, etwa in Form von ästhetisch ansprechenden, farbigen Solarmodulen für Fassaden. Nun geben 27 Fachleute einen umfassenden Überblick über den Stand der Forschung und eine Einschätzung, welche Innovationen besonders zielführend sind. Der Bericht, der auch für Entscheidungsträger*innen in der Forschungsförderung interessant ist, wurde von Prof. Christiane Becker und Dr. Klaus Jäger aus dem HZB koordiniert.
  • Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Science Highlight
    27.03.2025
    Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.
  • Samira Aden ist Mitglied der ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Arbeitsgruppe.
    Nachricht
    26.03.2025
    Samira Aden ist Mitglied der ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Arbeitsgruppe.
    Samira Jama Aden, Architektin in der Beratungstelle für bauwerkintegrierte Photovoltaik (BAIP), ist der Arbeitsgruppe “Environmental, Social and Governance (ESG)” der ETIP PV - The European Technology & Innovation Platform for Photovoltaics beigetreten.