Informationstechnologie: Besonderheiten von Germaniumtellurid auf der Nanoskala aufgedeckt

Die Fermioberfläche eines GeTe-Kristalls (111) konnte an BESSY II experimentell ermittelt werden.

Die Fermioberfläche eines GeTe-Kristalls (111) konnte an BESSY II experimentell ermittelt werden. © HZB

Germanium-Tellurid (GeTe) ist ein interessantes Material für die Spintronik. Nun hat ein deutsch-russisches Team an BESSY II gezeigt, wie sich die Spintextur in GeTe-Einkristallen durch ferroelektrische Polarisation innerhalb einzelner Nanodomänen umschalten lässt.

 

Germaniumtellurid (GeTe) ist als ferroelektrischer Rashba-Halbleiter mit einer Reihe von interessanten Eigenschaften bekannt. Die Kristalle bestehen aus Nanodomänen, die durch externe elektrische Felder polarisiert werden können. Aufgrund des sogenannten Rashba-Effekts kann in diesem Material die Ferroelektrizität auch dazu genutzt werden, die Elektronenspins innerhalb der Domänen umzuschalten.

Spintronik spart Energie

Germaniumtellurid ist daher ein interessantes Material für spintronische Bauelemente, die eine Datenverarbeitung mit deutlich geringerem Energieaufwand ermöglichen. Nun hat ein Team des HZB und der Lomonosov Moscow State University umfassende Einblicke in dieses Material auf der Nanoskala gegeben. Die Helmholtz-RSF-Joint Research Group wird Dr. Lada Yashina (Lomonosov-University) und Dr. Jaime Sánchez-Barriga (HZB) geleitet.

Strukturen auf der Nanoskala

"Wir haben das Material mit einer Reihe von komplementären Methoden untersucht, um seine atomare Struktur, und insbesondere auch die interne Korrelation zwischen der atomaren und elektronischen Struktur auf der Nanoskala zu bestimmen", sagt die Chemikerin Lada Yashina, die die hochwertigen kristallinen Proben in ihrem Moskauer Labor hergestellt hat.

Mikroskopische Untersuchungen zeigten, dass die  ferroelektrischen Nanodomänen von zwei verschiedenen Arten von Grenzflächen umgeben sind. An BESSY II konnte das Team diese Grenzflächen genau untersuchen und Nanodomänen mit entweder Germanium- oder Tellurium-Atomen an der obersten Oberflächenschicht zuordnen.

Ferroelektrizität und Spintexturen

"An BESSY II konnten wir dabei auch die Zusammenhänge zwischen der Spinpolarisation im Inneren oder an der Oberfläche der Domänen mit den Konfigurationen der ferroelektrischen Polarisation genau analysieren", erklärt der HZB-Physiker Jaime Sánchez-Barriga. Das Team ermittelte auch, wie die Spintextur durch ferroelektrische Polarisation innerhalb einzelner Nanodomänen wechselt. "Unsere Ergebnisse sind wichtig für potenzielle Anwendungen ferroelektrischer Rashba-Halbleiter in nichtflüchtigen Spintronik-Bauelementen mit erweiterten Speicher- und Rechenfähigkeiten auf der Nanoskala", betont Sánchez-Barriga.

arö


Das könnte Sie auch interessieren

  • Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Science Highlight
    17.07.2024
    Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Die besonderen Eigenschaften von magnetischen Materialien aus der Gruppe der Seltenen Erden gehen auf Elektronen in der 4f-Schale zurück. Bislang galten die magnetischen Eigenschaften der 4f-Elektronen als kaum kontrollierbar. Nun hat ein Team von HZB, der Freien Universität Berlin und weiteren Einrichtungen erstmals gezeigt, dass durch Laserpulse 4f-Elektronen beeinflusst – und damit deren magnetische Eigenschaften verändert werden können. Die Entdeckung, die durch Experimente am EuXFEL und FLASH gelang, weist einen neuen Weg zu Datenspeichern mit Seltenen Erden.
  • BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Science Highlight
    09.07.2024
    BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Feststoffbatterien können mehr Energie speichern und sind sicherer als Batterien mit flüssigen Elektrolyten. Allerdings halten sie nicht so lange und ihre Kapazität nimmt mit jedem Ladezyklus ab. Doch das muss nicht so bleiben: Forscherinnen und Forscher sind den Ursachen bereits auf der Spur. In der Fachzeitschrift ACS Energy Letters stellt ein Team des HZB und der Justus-Liebig-Universität Gießen eine neue Methode vor, um elektrochemische Reaktionen während des Betriebs einer Feststoffbatterie mit Photoelektronenspektroskopie an BESSY II genau zu verfolgen. Die Ergebnisse helfen, Batteriematerialien und -design zu verbessern.

  • HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Nachricht
    09.07.2024
    HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Auf der Suche nach dem perfekten Katalysator bekommt HZB-Forscher Robert Seidel nun Rückenwind – durch einen hochkarätigen ERC Consolidator Grant. In der Titelgeschichte stellen wir vor, warum die Röntgenquelle BESSY II für sein Vorhaben eine wichtige Rolle spielt.