Solarer Wasserstoff: Maß für die Stabilität von Photoelektroden

Skalierbare gro&szlig;fl&auml;chige BiVO<sub>4</sub>-Photoanode auf FTO mit Ni-Stromabnehmern.

Skalierbare großflächige BiVO4-Photoanode auf FTO mit Ni-Stromabnehmern. © HZB

Mit den Ergebnissen l&auml;sst sich Stabilit&auml;t von BiVO<sub>4</sub> in verschiedenen pH-gepufferten Borat-, Phosphat- und Citrat-Elektrolyten beurteilen.

Mit den Ergebnissen lässt sich Stabilität von BiVO4 in verschiedenen pH-gepufferten Borat-, Phosphat- und Citrat-Elektrolyten beurteilen. © https://pubs.acs.org/doi/10.1021/acsaem.0c01904

Sonnenenergie kann zur Herstellung von Wasserstoff, einem vielseitigen Brennstoff, genutzt werden. Um dies durch elektrolytische Wasserspaltung zu erreichen, werden hochwertige Photoelektroden benötigt. Leider neigen die bekannten Materialien dazu, während des Prozesses zu korrodieren. Nun hat ein Team am HZB in internationaler Zusammenarbeit die Korrosionsprozesse von hochwertigen BiVO4-Photoelektroden untersucht. Sie beobachteten die Prozesse "in operando" (bei der elektrolytischen Wasserspaltung) während der Sauerstoff-Entwicklungsreaktion (OER). Diese Arbeit zeigt, wie die Stabilität von Photoelektroden und Katalysatoren verglichen und so auch verbessert werden kann.

Wasserstoff ist ein vielseitiger Brennstoff, der chemische Energie speichern und bei Bedarf freisetzen kann. Dieser Brennstoff lässt sich klimaneutral erzeugen, wenn man die elektrolytische Aufspaltung von Wasser in Wasserstoff und Sauerstoff mit Solarenergie erreicht. Für diesen Ansatz sind kostengünstige Photoelektroden erforderlich, die unter Beleuchtung eine bestimmte Photospannung liefern und in wässrigen Elektrolyten stabil bleiben.

Korrosion während der Elektrolyse

Hier liegt jedoch das Haupthindernis; konventionelle Halbleiter korrodieren in Wasser sehr schnell. Metalloxid-Dünnschichten sind viel stabiler, korrodieren aber dennoch mit der Zeit. Eines der erfolgreichsten Photoanodenmaterialien ist Wismutvanadat (BiVO4), ein komplexes Metalloxid, in dem die Photoströme bereits nahe an der theoretischen Grenze liegen. Die größte Herausforderung für eine kommerziell nutzbare PEC-Wasserspaltung besteht darin, die Stabilität von Photoelektrodenmaterialien während ihres PEC-Betriebs zu bewerten und zu verbessern.

Zu diesem Zweck hat ein Team des HZB-Instituts für Solare Brennstoffe unter der Leitung von Prof. Roel van de Krol zusammen mit Gruppen des Max-Planck-Instituts für Eisenforschung, des Helmholtz-Instituts Erlangen-Nürnberg für Erneuerbare Energien, der Universität Freiburg und des Imperial College London eine Reihe modernster Charakterisierungsmethoden eingesetzt, um die Korrosionsprozesse von hochwertigen BiVO4-Photoelektroden zu verstehen.

Von Beginn bis zum Ende untersucht

"Bisher konnten wir nur Photoelektroden vor und nach photoelektrochemischer Korrosion untersuchen", sagt Dr. Ibbi Ahmet (HZB), der die Studie zusammen mit Siyuan Zhang vom Max-Planck-Institut initiiert hat. "Es war ein bisschen so, als würde man nur das erste und das letzte Kapitel eines Buches lesen und nicht wissen, wie alle Charaktere gestorben sind". In einem ersten Schritt zur Lösung dieses Problems stellte der Chemiker eine Reihe von hochreinen BiVO4-Dünnfilmen zur Verfügung, die in einer neu konzipierten Durchflusszelle mit verschiedenen Elektrolyten unter Standardbeleuchtung untersucht wurden.

Erste "operando"-Stabilitätsstudie

Das Ergebnis ist die erste operando-Stabilitätsstudie von hochreinen BiVO4-Photoanoden während der photoelektrochemischen Sauerstoffentwicklungsreaktion (OER). Mit Hilfe der In-situ-Plasma-Massenspektrometrie (ICPMS) konnten sie in Echtzeit bestimmen, welche Elemente während der photoelektrochemischen Reaktion von der Oberfläche der BiVO4-Photoanoden gelöst wurden.

Stabilitätszahl S

"Aus diesen Messungen konnten wir einen nützlichen Parameter, die Stabilitätszahl (S), bestimmen", sagt Ahmet. Diese Stabilitätszahl wird aus dem Verhältnis zwischen den erzeugten O2-Molekülen und der Anzahl der gelösten Metallatome im Elektrolyten berechnet und ist in der Tat ein perfekt vergleichbares Maß für die Photoelektrodenstabilität. Die Stabilität einer Photoelektrode ist hoch, wenn die Spaltung von Wasser schnell voranschreitet (in diesem Fall die Entwicklung von O2) und nur wenige Metallatome in den Elektrolyten gelangen. Dieser Parameter kann auch verwendet werden, um die Veränderung der Photoelektrodenstabilität während ihrer Lebensdauer zu bestimmen oder Unterschiede in der Stabilität von BiVO4 in verschiedenen pH-gepufferten Borat-, Phosphat- und Citrat-(Lochfänger-)Elektrolyten zu beurteilen.

Gezielte Verbesserungen

Diese Arbeit zeigt, wie die Stabilität von Photoelektroden und Katalysatoren in der Zukunft verglichen werden kann. Die Autoren haben die Zusammenarbeit fortgesetzt und nutzen nun diese wertvollen Techniken und Erkenntnisse, um praktikable Lösungen zur Verbesserung der Stabilität von BiVO4-Fotoanoden zu entwerfen und deren Einsatz in langfristigen praktischen Anwendungen zu ermöglichen.

arö


Das könnte Sie auch interessieren

  • Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Science Highlight
    17.07.2024
    Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Die besonderen Eigenschaften von magnetischen Materialien aus der Gruppe der Seltenen Erden gehen auf Elektronen in der 4f-Schale zurück. Bislang galten die magnetischen Eigenschaften der 4f-Elektronen als kaum kontrollierbar. Nun hat ein Team von HZB, der Freien Universität Berlin und weiteren Einrichtungen erstmals gezeigt, dass durch Laserpulse 4f-Elektronen beeinflusst – und damit deren magnetische Eigenschaften verändert werden können. Die Entdeckung, die durch Experimente am EuXFEL und FLASH gelang, weist einen neuen Weg zu Datenspeichern mit Seltenen Erden.
  • BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Science Highlight
    09.07.2024
    BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Feststoffbatterien können mehr Energie speichern und sind sicherer als Batterien mit flüssigen Elektrolyten. Allerdings halten sie nicht so lange und ihre Kapazität nimmt mit jedem Ladezyklus ab. Doch das muss nicht so bleiben: Forscherinnen und Forscher sind den Ursachen bereits auf der Spur. In der Fachzeitschrift ACS Energy Letters stellt ein Team des HZB und der Justus-Liebig-Universität Gießen eine neue Methode vor, um elektrochemische Reaktionen während des Betriebs einer Feststoffbatterie mit Photoelektronenspektroskopie an BESSY II genau zu verfolgen. Die Ergebnisse helfen, Batteriematerialien und -design zu verbessern.

  • Wertstoffe aus Abfall: Auf die richtigen Elektrolyte kommt es an
    Science Highlight
    01.07.2024
    Wertstoffe aus Abfall: Auf die richtigen Elektrolyte kommt es an
    Stellt man aus Biomasse Biodiesel her, fällt als Nebenprodukt Glycerin an. Bislang wird dieses Nebenprodukt jedoch wenig genutzt, obwohl es durch Oxidation in photoelektrochemischen Reaktoren (PEC) zu wertvolleren Chemikalien verarbeitet werden könnte. Der Grund dafür: geringe Effizienz und Selektivität. Nun hat ein Team um Dr. Marco Favaro vom Institut für Solare Brennstoffe am HZB den Einfluss der Elektrolyte auf die Effizienz der Glycerin-Oxidations-Reaktion in PEC-Reaktoren untersucht und Ergebnisse erhalten, die dabei helfen, effizientere und umweltfreundlichere Produktionsverfahren zu entwickeln.