Perowskit-Materialien: Neutronen zeigen Zwillingsbildung in Halid-Perowskiten

Dr. Michael Tovar am FALCON-Instrument der BER II Neutronenquelle.

Dr. Michael Tovar am FALCON-Instrument der BER II Neutronenquelle. © HZB

Mit der Laue-Kamera wurde das Beugungsmuster aufgenommen.

Mit der Laue-Kamera wurde das Beugungsmuster aufgenommen. © HZB

Solarzellen auf Basis von hybriden Halid-Perowskiten erreichen hohe Wirkungsgrade. Diese gemischt organisch-anorganischen Halbleiter werden in der Regel als dünne Filme aus Mikrokristallen produziert. Eine Untersuchung mit der Laue-Kamera an der Neutronenquelle BER II konnte nun aufklären, dass es beim Auskristallisieren auch bei Raumtemperatur zur Zwillingsbildung kommt. Dieser Einblick ist hilfreich, um Herstellungsverfahren von Halid-Perowskiten zu optimieren. 

Vor gut zehn Jahren entdeckten Forscherteams die Klasse der halborganischen Halid-Perowskite, die nun als neue Materialien für Solarzellen eine rasante Karriere machen. Die gemischt organisch-anorganischen Halbleiter erreichten innerhalb weniger Jahre Wirkungsgrade von über 25 Prozent.

Ihren Namen haben sie von ihrer Grundstruktur, die der des Minerals Perowskit (CaTiO3) sehr ähnlich ist, aber andere Bausteine enthält: Halid Anionen, Blei Kationen und organische molekulare Kationen.

MAPI-Struktur: offene Fragen

Im Falle der wichtigsten Verbindung der Klasse, Methylammoniumbleiiodid CH3NH3PbI3 (meist abgekürzt als MAPI), die auch hier untersucht wurde, handelt es sich bei den molekularen Kationen um Methylammonium-Kationen und bei den Anionen um Iodid-Anionen. Obwohl allein 2019 mehr als 4000 Publikationen zu Halid Perowskiten erschienen sind, ist es bislang nicht gelungen, ihre Struktur restlos zu verstehen. Man dachte, dass dies  im Falle von MAPI unter anderem daran liegt, dass sie als polykristalline Filme bei erhöhter Temperatur hergestellt werden und es beim Abkühlen auf Raumtemperatur zu Zwillingsbildung kommt.

Aufklärung mit Neutronen

Die Zwillingsbildung ist komplex und kann die Materialeigenschaften deutlich verändern. Daher ist es spannend, diesen Prozess näher zu untersuchen. „Wir haben nun MAPI bei Raumtemperatur auskristallisiert und mit der Laue-Kamera Falcon am BER II die so entstandenen Kristalle analysiert“, sagt Dr. Joachim Breternitz, HZB.

Zusammen mit seinen Kollegen Prof. Susan Schorr und Dr. Michael Tovar konnte er aus den Daten ermitteln, dass auch bei Raumtemperatur gezüchtete Kristalle Zwillinge bilden. Das gibt einen neuen Einblick in den Kristallisations- und Wachstumsprozess von MAPI. „Unsere Ergebnisse deuten darauf hin, dass die Kristallisationskeime eine höhere Symmetrie aufweisen, als die die fertigen Kristalle, die als Bulk bezeichnet werden“, erläutert Breternitz.

Mit diesen Einblicken kann die Synthese der technologisch wichtigen Dünnschichten gezielt optimiert werden.

Die Neutronenquelle BER II hat bis zu ihrer planmäßigen Abschaltung im Dezember 2019 Neutronen für die Forschung bereitgestellt. „Das war eines unserer letzten Experimente an FALCON am BER II und ich hoffe, dass wir damit bis zum Schluss nützliche Beiträge leisten konnten“, sagt Breternitz.

arö


Das könnte Sie auch interessieren

  • Gefriergussverfahren – Eine Anleitung für komplex strukturierte Materialien
    Science Highlight
    25.04.2024
    Gefriergussverfahren – Eine Anleitung für komplex strukturierte Materialien
    Gefriergussverfahren sind ein kostengünstiger Weg, um hochporöse Materialien mit hierarchischer Architektur, gerichteter Porosität und multifunktionalen inneren Oberflächen herzustellen. Gefriergegossene Materialien eignen sich für viele Anwendungen, von der Medizin bis zur Umwelt- und Energietechnik. Ein Beitrag im Fachjournal „Nature Reviews Methods Primer“ vermittelt nun eine Anleitung zu Gefriergussverfahren, zeigt einen Überblick, was gefriergegossene Werkstoffe heute leisten, und skizziert neue Einsatzbereiche. Ein besonderer Fokus liegt auf der Analyse dieser Materialien mit Tomoskopie.

  • IRIS-Beamline an BESSY II mit Nanomikroskopie erweitert
    Science Highlight
    25.04.2024
    IRIS-Beamline an BESSY II mit Nanomikroskopie erweitert
    Die Infrarot-Beamline IRIS am Speicherring BESSY II bietet nun eine vierte Option, um Materialien, Zellen und sogar Moleküle auf verschiedenen Längenskalen zu charakterisieren. Das Team hat die IRIS-Beamline mit einer Endstation für Nanospektroskopie und Nanoimaging erweitert, die räumliche Auflösungen bis unter 30 Nanometer ermöglicht. Das Instrument steht auch externen Nutzergruppen zur Verfügung.
  • Zusammenarbeit mit Korea Institute of Energy Research
    Nachricht
    23.04.2024
    Zusammenarbeit mit Korea Institute of Energy Research
    Am Freitag, den 19. April 2024, haben der wissenschaftliche Geschäftsführer des Helmholtz-Zentrum Berlin, Bernd Rech, und der Präsident des Korea Institute of Energy Research (KIER), Yi Chang-Keun, in Daejeon (Südkorea) ein Memorandum of Understanding (MOU) unterzeichnet.