HZB & IKZ bündeln ihre Kompetenzen bei kristallinen Energie- und Quantenmaterialien

Die Teilnehmer nach der Unterzeichnung des Kooperationsvertrags zwischen IKZ und HZB in Corona-konformen Abstand: (von links nach rechts) Dr. Andreas Popp (IKZ), Dr. Manuela Urban (FVB), Dr. Peter Gaal (IKZ), Prof. Dr. Catherine Dubourdieu (HZB), Prof. Dr. Thomas Schröder (IKZ), Prof. Dr. Bernd Rech (HZB), Thomas Frederking (HZB).

Die Teilnehmer nach der Unterzeichnung des Kooperationsvertrags zwischen IKZ und HZB in Corona-konformen Abstand: (von links nach rechts) Dr. Andreas Popp (IKZ), Dr. Manuela Urban (FVB), Dr. Peter Gaal (IKZ), Prof. Dr. Catherine Dubourdieu (HZB), Prof. Dr. Thomas Schröder (IKZ), Prof. Dr. Bernd Rech (HZB), Thomas Frederking (HZB). © Sandra Fischer/HZB

Am 11. September 2020 unterzeichneten das Helmholtz-Zentrum Berlin (HZB) und das Leibniz-Institut für Kristallzüchtung (IKZ) ein Kooperationsabkommen, um die gemeinsame Forschung an Energie- und Quantenmaterialien voran zu bringen. Im Rahmen der Kooperation werden auch neuartige Röntgenoptiken für Synchrotronstrahlungsquellen entwickelt.

Das IKZ arbeitet seit vielen Jahren eng mit dem HZB zusammen: Einerseits nutzen IKZ-WissenschaftlerInnen die Strahlungsquelle BESSY II des HZB für ihre materialwissenschaftlichen Untersuchungen, andererseits entwickeln und fertigen die KristallzüchterInnen des IKZ Komponenten, welche die besonderen Eigenschaften von BESSY II zur Geltung bringen.

„Wir freuen uns sehr, dass wir mit dem Kooperationsvertrag unsere enge Zusammenarbeit noch verstärken können“, sagt Prof. Dr. Bernd Rech, wissenschaftlicher Geschäftsführer am HZB. „An BESSY II bieten wir eine Vielfalt an röntgenanalytischen Methoden für die Analyse komplexer Materialsysteme. Im Rahmen unserer Kooperation können wir unsere sich ergänzenden Kompetenzen gezielt einsetzen, um gemeinsam Forschungsgebiete in der Energieforschung und den Quantentechnologien zu erschließen.“

Auch Prof. Thomas Schröder, wissenschaftlicher Direktor am IKZ betont die Chancen der Zusammenarbeit beider Forschungseinrichtungen. "Das IKZ ist sehr daran interessiert, mit dem HZB gemeinsame F&E-Projekte zu Materialien für die Photovoltaik und Leistungselektronik zu initiieren. Darüber hinaus evaluieren wir Möglichkeiten, unser gemeinsames Potential im Hinblick auf Zukunftsthemen wie z.B. die Quantentechnologie zu bündeln, um eine möglichst große Wirkung in diesem Forschungsgebiet zu entfalten.“ Da Prof. Schröder selbst einen Teil seiner Karriere in der Synchrotron-Forschung absolviert hat, gibt es auch einen engen persönlichen Bezug zur Material- und Methodenentwicklung für die Großgeräteforschung. „Heute freue ich mich, dass das IKZ neue F&E-Projekte mit BESSY II beginnen kann, um mit unseren kristallinen Materialien die Synchrotronquellen z.B. durch aktive und passive Röntgenoptiken zu unterstützen.“

Kurzinfo zum IKZ:

Das IKZ in Berlin-Adlershof ist ein internationales Kompetenz-Zentrum für Wissenschaft, Technologie, Service und Transfer im Bereich kristalliner Materialien. Das Forschungs- und Entwicklungs-Spektrum reicht dabei von Themen der Grundlagen- und Anwendungs-Forschung bis hin zu vorindustriellen Forschungsaufgaben. Das IKZ erarbeitet Innovationen in kristallinen Materialien durch seine Expertise in Anlagenbau, numerischer Simulation und Kristallzüchtung zur Erzielung kristalliner Materialien höchster Qualität und mit maßgeschneiderten Eigenschaften. Das Alleinstellungsmerkmal des Instituts ist die Forschung an Volumenkristallen. Diese Arbeiten werden begleitet durch Forschung und Entwicklung an Nanostrukturen und dünnen Filmen und eine starke theoretische und experimentelle Materialforschung.

IKZ

  • Link kopieren

Das könnte Sie auch interessieren

  • Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Science Highlight
    28.03.2025
    Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Im Jahr 2023 erzeugten Photovoltaikanlagen weltweit mehr als 5% der elektrischen Energie und die installierte Leistung verdoppelt sich alle zwei bis drei Jahre. Optische Technologien können die Effizienz von Solarmodulen weiter steigern und neue Einsatzbereiche erschließen, etwa in Form von ästhetisch ansprechenden, farbigen Solarmodulen für Fassaden. Nun geben 27 Fachleute einen umfassenden Überblick über den Stand der Forschung und eine Einschätzung, welche Innovationen besonders zielführend sind. Der Bericht, der auch für Entscheidungsträger*innen in der Forschungsförderung interessant ist, wurde von Prof. Christiane Becker und Dr. Klaus Jäger aus dem HZB koordiniert.
  • Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Science Highlight
    27.03.2025
    Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.
  • BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Science Highlight
    25.03.2025
    BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Eine blütenförmige Struktur aus einer Nickel-Eisen-Legierung, die nur wenige Mikrometer misst, kann Magnetfelder lokal verstärken. Der Effekt lässt sich durch die Geometrie und Anzahl der „Blütenblätter“ steuern. Das magnetische Metamaterial wurde von der Gruppe um Dr. Anna Palau am Institut de Ciencia de Materials de Barcelona (ICMAB) mit Partnern aus dem CHIST-ERA MetaMagIC-Projekts entwickelt und nun an BESSY II in Zusammenarbeit mit Dr. Sergio Valencia untersucht. Die Mikroblüten ermöglichen vielfältige Anwendungen: Sie können die Empfindlichkeit magnetischer Sensoren erhöhen, die Energie für die Erzeugung lokaler Magnetfelder reduzieren, und am PEEM-Messplatz an BESSY II die Messung von Proben unter deutlich höheren Magnetfeldern ermöglichen.