„Upconversion“ von Photonen bei schwacher Lichtintensität – der Schlüssel zu neuen Anwendungen in Energie- und Biotechnik

Periodische Metaoberflächen (grau) können die Photon Aufkonvertierung durch Nanoteilchen (gelb) um mehr als drei Größenordnungen steigern.

Periodische Metaoberflächen (grau) können die Photon Aufkonvertierung durch Nanoteilchen (gelb) um mehr als drei Größenordnungen steigern. © BAM/Christian Würth

Durch Umwandlung von energiearmen in energiereiche Photonen lässt sich der nutzbare Bereich des Lichtspektrums deutlich erweitern. Doch bisher gelang das nur bei hoher Lichtintensität. Durch die Kombination bestimmter Nanopartikel mit einer sogenannten Metaoberfläche konnten Wissenschaftler des HZB und der Bundesanstalt für Materialforschung und -prüfung (BAM) den Effekt erstmals auch für relativ schwaches Licht nutzbar machen. Das ebnet den Weg für künftige Anwendungen in der Photovoltaik, zum Nachweis biologischer Substanzen oder als Messfühler für elektrische Felder.

Manche Materialien zeichnen sich durch eine besondere Eigenschaft aus: Sie sind in der Lage, langwelliges Licht in Licht mit deutlich kürzerer Wellenlänge umzuwandeln. Dazu vereinen sie je zwei oder mehr energiearme Photonen zu einem Photon mit höherem Energiegehalt. Physiker sprechen dabei von Aufkonvertierung oder Upconversion. Dieser Effekt eröffnet etwa in der Photovoltaik die Möglichkeit, auch bislang nicht genutzte Anteile des Sonnenlichts für die Gewinnung von elektrischer Energie nutzbar zu machen. „In den heute verwendeten Solarzellen, die meist aus Silizium bestehen, gilt das für infrarotes Licht mit Wellenlängen von mehr als etwa 1200 Nanometern, das bei der Stromerzeugung verlorengeht“, sagt Prof. Dr. Christiane Becker, die am Helmholtz-Zentrum Berlin für Materialien und Energie (HZB)  eine Nachwuchsforschungsgruppe leitet (Nano SIPPE). Durch Upconversion ließe sich der Verlust an Licht verringern und die energetische Effizienz von Solarzellen so deutlich verbessern.

Das Manko der Intensitätsabhängigkeit beseitigt

Dass dieser Trick bislang technisch nicht angewandt wird, liegt vor allem an der geringen Umwandlungseffizienz der zum Aufkonvertieren von Photonen geeigneten Materialien. „Man benötigt für diesen Prozess sehr hohe Lichtintensitäten“, sagt Becker. „Das Sonnenlicht ist dafür schlichtweg zu schwach.“ Doch gemeinsam mit einem Team um Dr. Christian Würth und Dr. Ute Resch-Genger vom Fachbereich Biophotonik der BAM in Berlin fanden Becker und ihre Arbeitsgruppe nun einen Weg, um den Upconversion-Effekt auch dafür zu erschließen: Dazu beschichteten die Forscherinnen eine sogenannte Metaoberfläche – eine Materialoberfläche, die eine regelmäßige Struktur im Maßstab weniger Nanometer besitzt – mit Nanoteilchen. Sie bestehen aus den Elementen Natrium, Yttrium, Fluor, Ytterbium und Erbium (UCNP) und können durch Upconversion infrarotes in sichtbares Licht umwandeln.

Durch experimentelle Messungen und Computersimulationen konnten die Berliner Forschergruppen belegen, dass die spezielle Struktur an bestimmten Stellen der Metaoberfläche die Intensität des eingestrahlten Lichts enorm verstärkt und so eine wirkungsvolle Wandlung der Wellenlänge ermöglicht. Der Vergleich mit einer ebenen Oberfläche ohne Nanostrukturierung zeigte: Bei einer geeigneten Dimensionierung der Beschichtung aus UCNP-Nanoteilchen lässt sich eine bis zu tausendfache Verstärkung der elektrischen Feldstärke in den Lichtwellen erreichen.

Nachweis von Nukleinsäuren oder Antikörpern

Eine mögliche Anwendung dafür sieht die HZB-Wissenschaftlerin neben der Photovoltaik vor allem auch in der Biotechnologie.  Biologische Substanzen wie der Erbsubstanz DNA (Desoxyribonukleinsäure) oder Antikörper der menschlichen Immunabwehr könnten mithilfe dieses Effekts detektiert werden. Die Idee der Berliner Forscher: „Man könnte das Upconversion-Material an solchen Molekülen oder biochemischen Partikeln befestigen“, erklärt Becker. „Dann ließen sich nachzuweisenden Substanzen mit infrarotem Licht anregen – und beispielsweise mit grünem Licht nachweisen.“ Der Vorteil: So wären das anregende und das detektierte Licht spektral strikt voneinander getrennt – anders als bei herkömmlichen Verfahren, bei denen sich die beiden Lichtanteile teils gegenseitig beeinflussen und den Nachweis dadurch erschweren. „Somit wäre es möglich, auch sehr geringe Konzentrationen etwa von Antikörpern zuverlässig zu messen“, sagt die Wissenschaftlerin.

Sie hat zudem eine weitere mögliche Anwendung des Upconversion-Effekts im Visier: „Da die Eigenschaften der dabei verwendeten Nanoteilchen genau bekannt sind, lässt sich aus dem Verhältnis der Intensitäten von rotem oder infrarotem und grünem Licht auf die Stärke des elektrischen Feldes an der Metaoberfläche schließen“, erklärt sie. Dass das funktioniert, haben die Forscher von BAM und HZB in ihren Experimenten ebenfalls belegt. Damit haben sie einen neuartigen und hochempfindlichen Sensor für elektrische Feldstärken im Nanobereich geschaffen.

Die Arbeit wurde in Nano Letters veröffentlicht: „Metasurface enhanced sensitized photon upconversion: towards highly efficient low power upconversion applications and nano-scale E-field sensors“. Christian Würth, Phillip Manley, Robert Voigt, Doğuşcan Ahiboz, Christiane Becker, Ute Resch-Genger.

DOI: https://dx.doi.org/10.1021/acs.nanolett.0c02548

red


Das könnte Sie auch interessieren

  • Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Science Highlight
    17.07.2024
    Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Die besonderen Eigenschaften von magnetischen Materialien aus der Gruppe der Seltenen Erden gehen auf Elektronen in der 4f-Schale zurück. Bislang galten die magnetischen Eigenschaften der 4f-Elektronen als kaum kontrollierbar. Nun hat ein Team von HZB, der Freien Universität Berlin und weiteren Einrichtungen erstmals gezeigt, dass durch Laserpulse 4f-Elektronen beeinflusst – und damit deren magnetische Eigenschaften verändert werden können. Die Entdeckung, die durch Experimente am EuXFEL und FLASH gelang, weist einen neuen Weg zu Datenspeichern mit Seltenen Erden.
  • BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Science Highlight
    09.07.2024
    BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Feststoffbatterien können mehr Energie speichern und sind sicherer als Batterien mit flüssigen Elektrolyten. Allerdings halten sie nicht so lange und ihre Kapazität nimmt mit jedem Ladezyklus ab. Doch das muss nicht so bleiben: Forscherinnen und Forscher sind den Ursachen bereits auf der Spur. In der Fachzeitschrift ACS Energy Letters stellt ein Team des HZB und der Justus-Liebig-Universität Gießen eine neue Methode vor, um elektrochemische Reaktionen während des Betriebs einer Feststoffbatterie mit Photoelektronenspektroskopie an BESSY II genau zu verfolgen. Die Ergebnisse helfen, Batteriematerialien und -design zu verbessern.

  • Wertstoffe aus Abfall: Auf die richtigen Elektrolyte kommt es an
    Science Highlight
    01.07.2024
    Wertstoffe aus Abfall: Auf die richtigen Elektrolyte kommt es an
    Stellt man aus Biomasse Biodiesel her, fällt als Nebenprodukt Glycerin an. Bislang wird dieses Nebenprodukt jedoch wenig genutzt, obwohl es durch Oxidation in photoelektrochemischen Reaktoren (PEC) zu wertvolleren Chemikalien verarbeitet werden könnte. Der Grund dafür: geringe Effizienz und Selektivität. Nun hat ein Team um Dr. Marco Favaro vom Institut für Solare Brennstoffe am HZB den Einfluss der Elektrolyte auf die Effizienz der Glycerin-Oxidations-Reaktion in PEC-Reaktoren untersucht und Ergebnisse erhalten, die dabei helfen, effizientere und umweltfreundlichere Produktionsverfahren zu entwickeln.