Forscherteam liefert konkreten Ansatzpunkt, um die Leistung von CIGS-Solarzellen zu verbessern

</p> <p>Daniel Abou-Ras und sein Team ermitteln die mikroskopische Struktur einer sehr guten CIGS-D&uuml;nnschicht-Solarzelle (oben). Sie dient als Vorbild f&uuml;r eine Computersimulation (unten)

Daniel Abou-Ras und sein Team ermitteln die mikroskopische Struktur einer sehr guten CIGS-Dünnschicht-Solarzelle (oben). Sie dient als Vorbild für eine Computersimulation (unten) © HZB/M. Krause

Ein Forscherteam hat mithilfe von Elektronenmikroskopen und Computersimulationen ermittelt, warum es zu Verlusten in Dünnschichtsolarzellen kommt. Die Forschenden von der Martin-Luther-Universität Halle-Wittenberg, vom Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW) und vom Helmholtz-Zentrum Berlin (HZB) geben konkrete Hinweise, wie sich der bereits hohe Wirkungsgrad von CIGS-Solarzellen verbessern lässt. Die Ergebnisse wurde in der Zeitschrift Nature Communication veröffentlicht.

Dünnschichtsolarzellen aus Kupfer-Indium-Gallium-Diselenid oder kurz CIGS glänzen schon längst mit Rekord-Wirkungsgraden von 23,4 Prozent und weiteren Vorteilen wie der Möglichkeit zur Produktion auf flexiblen Substraten, was mit herkömmlichen Solarzellen aus Silizium-Wafern nicht möglich ist. Dieser Wirkungsgrad lässt sich aber durchaus noch verbessern, weil beim Umwandeln von Sonnenlicht in elektrische Leistung einige Verluste auftreten. Nur müssten die Hersteller erst einmal wissen, wo diese Einbußen genau auftreten.

Korngrenzen sind entscheidend

Eine Antwort auf diese Frage hat jetzt das Team um HZB-Forscher Dr. Daniel Abou-Ras geliefert und erhärtet damit einen schon länger bestehenden Verdacht: Ein erheblicher Teil der Verluste passiert an den Grenzen zwischen den CIGS-Kristallen einer Dünnschicht-Solarzelle, wenn sich an diesen „Korngrenzen“ positive und negative elektrische Ladungen gegenseitig neutralisieren.

Diese Ladungen entstehen, wenn das Sonnenlicht auf ein Halbleitermaterial wie Silizium oder CIGS trifft. Die energiereiche Strahlung schlägt aus den Atomen dieses Halbleiters elektrisch negativ geladene Elektronen heraus, zurück bleiben positiv geladene Elektronenfehlstellen, die in der Fachsprache als „Löcher“ bezeichnet werden. Diese beweglichen, elektrischen Ladungen werden an Kontakten gesammelt und liefern dort die elektrische Leistung. Die wiederum hängt von zwei Faktoren ab: Je mehr Elektronen die Sonnenstrahlung im Halbleiter anregt, umso besser ist auf der einen Seite der Stromfluss. Andererseits hängt die elektrische Leistung auch von der elektrischen Spannung ab, die sich verringert, wenn positive und negative Ladungen wieder zusammenkommen. Diese Rekombination von Löchern und Elektronen mindert also die elektrische Leistung einer Solarzelle.

Mit dem Elektronenmikroskop und Simulationen Verlusten auf der Spur

„Zunächst haben wir mit dem Elektronenmikroskop die Struktur solcher CIGS-Dünnschicht-Solarzellen untersucht und an exakt der gleichen Stelle die Verteilung der vorhandenen Elemente analysiert“, erklärt Daniel Abou-Ras. Diese Verteilung gibt dem Forscher wichtige Hinweise zur Lage der einzelnen CIGS-Kristalle. Mit einer speziellen Kombination weiterer Methoden klärt das Team diese Mikrostrukturen sehr fein auf.

Die so ermittelte Struktur einer CIGS-Solarzelle mit sehr gutem Wirkungsgrad überträgt die Gruppe dann in ein Computermodell. Diese Simulation passen Daniel Abou-Ras und sein Team mit Hilfe ihrer experimentellen Ergebnisse so lange an, bis sie die Vorgänge in einer echten CIGS-Solarzelle möglichst exakt nachbildet.

„In diesem Computermodell können wir dann beobachten, wie verschiedene Veränderungen die elektrische Leistung einer Solarzelle beeinflussen“, erklärt Daniel Abou-Ras. So hat die absorbierende Schicht einer CIGS-Solarzelle durch eine sogenannte p-leitende Dotierung von vorneherein einen Überschuss an Löchern, die sich dort unregelmäßig verteilen. Variiert die Gruppe im Computermodell die Verteilung dieser Löcher, haben solche Inhomogenitäten keinen messbaren Einfluss auf die elektrische Leistung der Solarzelle. Die Verluste haben also eine andere Ursache. Auch unterschiedliche Lebensdauern der Paare aus Elektronen und Löchern verändern die Leistung der CIGS-Solarzellen nur unwesentlich.

Entscheidend ist, was an den Grenzbereichen der Kristalle passiert

Sehr wohl aber beeinflussen die Grenzbereiche zwischen den einzelnen Kristallen die Leistung deutlich. „Die Atome in CIGS-Kristallen ordnen sich ja in bestimmten Strukturen an“, erklärt Daniel Abou-Ras. An den Stellen, an denen sich zwei solche hochgeordneten Kristalle berühren, passen diese Kristallgitter oft nicht so gut zusammen. Dort entstehen Defekte, die Elektronen oder Löcher gut einfangen können. Das Team ist mit der vorliegenden Arbeit nun in der Lage, recht gut zu bestimmen, wie stark die Ladungen rekombinieren und wie sehr entsprechend Spannung und Leistung der Solarzellen abfallen.

„Dieses Ergebnis gibt den Herstellern einen wichtigen Hinweis, wie sie CIGS-Solarzellen weiter verbessern können“, ist Daniel Abou-Ras überzeugt. Schaffen die Entwickler es, die Kristalle erheblich zu vergrößern, gibt es auch weniger Grenzflächen und der bisherige Rekord-Wirkungsgrad könnte wohl deutlich verbessert werden.

DOI: 10.1038/s41467-020-17507-8

 

Roland Knauer

  • Link kopieren

Das könnte Sie auch interessieren

  • Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Science Highlight
    28.03.2025
    Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Im Jahr 2023 erzeugten Photovoltaikanlagen weltweit mehr als 5% der elektrischen Energie und die installierte Leistung verdoppelt sich alle zwei bis drei Jahre. Optische Technologien können die Effizienz von Solarmodulen weiter steigern und neue Einsatzbereiche erschließen, etwa in Form von ästhetisch ansprechenden, farbigen Solarmodulen für Fassaden. Nun geben 27 Fachleute einen umfassenden Überblick über den Stand der Forschung und eine Einschätzung, welche Innovationen besonders zielführend sind. Der Bericht, der auch für Entscheidungsträger*innen in der Forschungsförderung interessant ist, wurde von Prof. Christiane Becker und Dr. Klaus Jäger aus dem HZB koordiniert.
  • Samira Aden ist Mitglied der ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Arbeitsgruppe.
    Nachricht
    26.03.2025
    Samira Aden ist Mitglied der ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Arbeitsgruppe.
    Samira Jama Aden, Architektin in der Beratungstelle für bauwerkintegrierte Photovoltaik (BAIP), ist der Arbeitsgruppe “Environmental, Social and Governance (ESG)” der ETIP PV - The European Technology & Innovation Platform for Photovoltaics beigetreten.
  • Die Zukunft der Energie: Empfehlungen der Wissenschaft an die Politik
    Nachricht
    21.03.2025
    Die Zukunft der Energie: Empfehlungen der Wissenschaft an die Politik
    Expert*innen des HZB haben ihr Fachwissen in den hier kurz vorgestellten Positionspapieren eingebracht.
    Zu den Themen gehören die Entwicklung innovativer Materialien für eine nachhaltige Energieversorgung und die Kreislaufwirtschaft.
    Fachleute aus verschiedenen Bereichen haben gemeinsam Lösungen und Handlungsempfehlungen formuliert.