Mathematisches Werkzeug hilft, Quantenmaterialien rascher zu berechnen

Intelligente mathematische Werkzeuge f&uuml;r die Simulation von Spin-Systemen reduzieren die ben&ouml;tigte Rechenzeit auf Supercomputern. Einige der schnellsten Supercomputer der Welt (hier JUWELS) stehen aktuell im Forschungszentrum J&uuml;lich.</p> <p>

Intelligente mathematische Werkzeuge für die Simulation von Spin-Systemen reduzieren die benötigte Rechenzeit auf Supercomputern. Einige der schnellsten Supercomputer der Welt (hier JUWELS) stehen aktuell im Forschungszentrum Jülich.

© Forschungszentrum Jülich/Sascha Kreklau

Viele Quantenmaterialien lassen sich bislang kaum rechnerisch simulieren, weil die benötigte Rechenzeit zu groß wäre. Nun hat eine gemeinsame Forschergruppe an der Freien Universität Berlin und am Helmholtz-Zentrum Berlin (HZB) einen Weg aufgezeigt, wie sich die Rechenzeiten deutlich verkürzen lassen. Dies könnte die Entwicklung von Materialien für künftige energieeffiziente IT-Technologie beschleunigen.

Weltweit arbeiten Supercomputer rund um die Uhr für die Forschung. Auch neuartige Materialien lassen sich im Prinzip im Computer simulieren, um ihre magnetischen oder thermischen Eigenschaften und Phasenübergänge zu berechnen. Der Goldstandard für solche Modellierungen ist die sogenannte Quanten-Monte-Carlo-Methode.

Welle-Teilchen-Dualismus erschwert die Modellierung

Doch die hat ein intrinsisches Problem: Aufgrund des quantenphysikalischen Welle-Teilchen-Dualismus besitzt jedes Teilchen im Festkörperverbund nicht nur Teilcheneigenschaften wie Masse und Impuls, sondern auch Welleneigenschaften wie eine Phase. Durch Interferenz überlagern sich die „Wellen“, sie können sich so lokal entweder verstärken (addieren) oder auslöschen (subtrahieren). Die Berechnungen werden dadurch ausgesprochen komplex. Dies wird als Vorzeichen-Problem der Quanten-Monte-Carlo-Methode bezeichnet.

Perspektivwechsel lohnt

„Jeden Tag kostet die Berechnung von Quantenmaterialien rund eine Millionen Stunden CPU an Großrechnern“, sagt Prof. Dr. Jens Eisert, der die gemeinsame Forschergruppe an der Freien Universität Berlin und HZB leitet. „Dies ist ein sehr erheblicher Anteil der überhaupt zur Verfügung stehenden Rechenzeit.“ Zusammen mit seinem Team hat der theoretische Physiker nun ein mathematisches Verfahren entwickelt, mithilfe dessen das Vorzeichenproblem soweit möglich verringert werden kann. „Wir zeigen, dass sich Festkörpersysteme aus sehr unterschiedlichen Perspektiven betrachten lassen. Und je nach Perspektive spielt das Vorzeichenproblem eine unterschiedlich große Rolle. Es geht dann darum, das Festkörpersystem so anzupacken, dass das Vorzeichenproblem minimal wird“, erklärt Dominik Hangleiter, Erstautor der Studie, die nun in Science Advances erschienen ist.

Anwendung auf Spin-Systeme

Für einfache Festkörpersysteme mit Spins, die sogenannte Heisenberg-Leitern bilden, konnten sie mit diesem Ansatz das Vorzeichenproblem deutlich reduzieren. Das mathematische Werkzeug lässt sich aber auch auf komplexere Spin-Systeme anwenden und verspricht eine raschere Berechnung ihrer Eigenschaften.

„Damit stellen wir eine neue Methode bereit, um gezielt Materialien mit besonderen Spin-Eigenschaften zu entwickeln“, sagt Eisert. Solche Materialien könnten in zukünftigen IT-Technologien Verwendung finden, in denen Daten mit deutlich weniger Energieaufwand verarbeitet und gespeichert werden sollen.

Science Advances 2020: Easing the Monte Carlo sign problem; Dominik Hangleiter, Ingo Roth, Daniel Nagaj, Jens Eisert

Doi: 10.1126/sciadv.abb8341

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Science Highlight
    28.10.2024
    Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.
  • Perowskit-Solarzellen: Protokolle für Reproduzierbarkeit und Vergleichbarkeit
    Nachricht
    22.10.2024
    Perowskit-Solarzellen: Protokolle für Reproduzierbarkeit und Vergleichbarkeit
    Zehn Teams am Helmholtz-Zentrum Berlin bauen eine langfristige internationale Allianz auf, um gemeinsam Verfahren zu entwickeln, die die Reproduzierbarkeit von Perowskit-Materialien sicherstellen. Das Projekt TEAM PV wird vom Bundesministerium für Bildung und Forschung (BMBF) gefördert.