Mit neuem kompakten Messgerät opto-elektronische Bauteile optimieren

Kompakt und sehr vielseitig einsetzbar: Der neue LumY Pro bestimmt die Lumineszenz-Effizienz von einzelnen Schichten, Schichtstapeln und ganzen Bauteilen.

Kompakt und sehr vielseitig einsetzbar: Der neue LumY Pro bestimmt die Lumineszenz-Effizienz von einzelnen Schichten, Schichtstapeln und ganzen Bauteilen.

Um effiziente opto-elektronische Bauteile wie Solarzellen oder LEDs zu entwickeln, ist es entscheidend, die Qualität der eingesetzten Halbleiter zu verbessern. Dafür ist es notwendig, die Lumineszenz-Ausbeute des Halbleiter-Materials zu ermitteln. Für diese Charakterisierung hat ein Forscherteam am HZB ein neues Messgerät entwickelt, das die Lumineszenz präzise bestimmt und das obendrein sehr kompakt ist. Um das Potenzial für kommerzielle Anwendungen auszuloten, erhält das Team nun eine Field Study Fellowship der Helmholtz-Gemeinschaft.

Ein Forscherteam aus dem HZB hat bereits einen funktionierenden Prototyp des Messgeräts gebaut, der nun zu einem kommerziellen Produkt weiterentwickelt werden soll. Es will damit das für ihre eigene Forschung entwickelte und optimierte Messsystem „LumY Pro“ einem weiten Anwenderkreis zur Verfügung stellen – ganz im Sinne des Technologie- und Wissenstransfers. Im Blick haben die Forscher vor allem Anwender aus der Forschung und Industrie, die an der Weiterentwicklung von opto-elektronischen Bauteilen wie Solarzellen und LEDs arbeiten.

Das Messgerät „LumY Pro“ ist kleiner als ein Schuhkarton (20x22x12 cm) und lässt sich damit auch in der Schutzatmosphäre einer Glovebox (Handschuhkasten) einsetzen. Es misst die Menge eingestrahlter Photonen oder eingebrachter Elektronen und die Menge der durch Anregung emittierten Photonen einer Probe (absolute Photonen- oder Elektrolumineszenz). Dadurch können die Forscher Rückschlüsse auf die Ladungsträgerdichte im Absorber ziehen und detailliert betrachten, wo es zu Verlusten im Bauteil kommt.

Qualität von Bauteilen, Schichtstapeln und einzelne Schichten bestimmen

Untersuchen lassen sich damit einzelne Schichten, aber auch Schichtstapel und komplette Bauteile bei flexibel einstellbaren Lichtintensitäten und elektrischen Spannungen. Die detaillierte Analyse ist dabei in einer eigens entwickelten Mess- und Auswertungssoftware integriert. Die Software und der Prototyp des Systems wurden in Zusammenarbeit mit dem Helmholtz Innovation Lab HySPRINT bereits erfolgreich an verschiedenen Halbleitern getestet.

Einsetzbar für viele Halbleitermaterialien - Auswertungssoftware integriert

Einsetzen lässt sich „LumY Pro“ unter anderem für die Qualitätsbestimmung organisch-anorganischer Perowskite, aber auch anderer Halbleitermaterialien wie Kesterite oder Galliumarsenid. Das Entwicklerteam hofft damit, Forschung und Entwicklung solcher opto-elektronischer Bauteile beschleunigen und den Ressourcenverbrauch dabei verringern zu können. Das Potenzial ist groß, denn allein an Solarzellen aus Perowskiten arbeiten mehr als 400 Arbeitsgruppen weltweit.

„Ein präzises Messsystem, das all diese Charakterisierungsmöglichkeiten in sich vereint, fehlt am Markt derzeit. Wir wollen dies nun in einem kompakten, vielseitigen und dennoch einfach zu bedienenden Produkt realisieren“, sagt Dr. Lukas Kegelmann aus dem Projektteam. Die Feldstudie soll nun zeigen, wie groß das Marktpotenzial ist und welche Einsatzzwecke und Funktionalitäten für die Anwender aus der Forschung und Industrie besonders interessant sind.   

Entwickelt wurde Messsystem und dessen Methodik von Wissenschaftlern der HZB-Gruppen um Dr. Thomas Unold, Dr. Eva Unger und Prof. Dr. Steve Albrecht.

 

(sz)


Das könnte Sie auch interessieren

  • Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Science Highlight
    24.06.2024
    Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Ein Team um Dr. Ioanna Mantouvalou hat eine Methode entwickelt, um die Verteilung von chemischen Elementen in Dentalmaterialien präziser als bisher möglich darzustellen. Die konfokale mikro-Röntgenfluoreszenzanalyse (micro-XRF) liefert dreidimensional aufgelöste Elementbilder, die Verzerrungen enthalten. Sie entstehen, wenn Röntgenstrahlen Materialien unterschiedlicher Dichte und Zusammensetzung durchdringen. Mit Mikro-CT-Daten, die detaillierte 3D-Bilder der Materialstruktur liefern, und chemischen Informationen aus Röntgenabsorptionsspektroskopie (XAS) - Experimenten im Labor (BLiX, TU Berlin) und an der Synchrotronstrahlungsquelle BESSY II haben die Forschenden das Verfahren nun verbessert.
  • Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Nachricht
    19.06.2024
    Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Am 17. Juni 2024 ist in Jena das Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) im Beisein von Wolfgang Tiefensee, Minister für Wirtschaft, Wissenschaft und Digitale Gesellschaft des Freistaates Thüringen, feierlich eröffnet worden. Das Institut wurde vom Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) in Kooperation mit der Friedrich-Schiller-Universität Jena gegründet: Es widmet sich der Entwicklung nachhaltiger Polymermaterialien für Energietechnologien. Diese sollen eine Schlüsselrolle bei der Energiewende spielen und Deutschlands Ziel unterstützen, bis 2045 klimaneutral zu werden.
  • „Forschung und Entwicklung ist auch in Kriegszeiten entscheidend!“
    Interview
    18.06.2024
    „Forschung und Entwicklung ist auch in Kriegszeiten entscheidend!“
    Am 11. und 12. Juni fand die Ukraine Recovery Conference in Berlin statt. Begleitend diskutierten Vertreter*innen von Helmholtz, Fraunhofer und Leibniz, wie Forschung zu einem nachhaltigen Wiederaufbau der Ukraine beitragen kann. In diesem Interview spricht Bernd Rech, wissenschaftlicher Geschäftsführer am HZB, über die Bedeutung von Forschung während des Krieges und Projekten wie Green Deal Ukraina.