Nutzerforschung an BESSY II: Einblick in das Auge der Pflanzen

Innerhalb der 3D-Struktur eines Phytochrom-Moleküls zeigt sich ein Bilin-Pigment, das das Photon aufnimmt und sich dadurch verdreht, was ein Signal auslöst.

Innerhalb der 3D-Struktur eines Phytochrom-Moleküls zeigt sich ein Bilin-Pigment, das das Photon aufnimmt und sich dadurch verdreht, was ein Signal auslöst. © Jon Hughes

Pflanzen nutzen Licht nicht nur für die Photosynthese. Die Pflanzenzelle hat zwar keine Augen, kann aber dennoch Licht wahrnehmen und damit ihr Umfeld. Dabei spielen Phytochrome, bestimmte türkisfarbige Proteine, die zentrale Rolle. Wie genau sie funktionieren, ist noch unklar. Nun konnte das Team um den Pflanzenphysiologen Jon Hughes (Justus-Liebig-Universität Gießen) an BESSY II die dreidimensionale Architektur von verschiedenen pflanzlichen Phytochrom-Molekülen entschlüsseln. Dabei zeigt sich, wie Licht die Struktur des Phytochroms verändert, so dass die Zelle das Lichtsignal weiterleitet, um die Entwicklung der Pflanze entsprechend zu steuern.

Pflanzen nutzen Licht nicht ausschließlich für die Photosynthese. So besitzen alle Pflanzen Phytochrome – spezielle Moleküle, die den Pflanzen eine Art von Sehvermögen vermitteln und damit die Biochemie der Zelle und die Entwicklung der Pflanze steuern können. Inzwischen weiß man, dass Phytochrome fast ein Viertel des Pflanzengenoms regulieren. Unklar war bislang jedoch, wie Phytochrome genau funktionieren: Wie wird das Licht aufgenommen? Was passiert danach im Molekül, wie wird das Lichtsignal weitergegeben?

Die Arbeitsgruppe von Prof. Jon Hughes am Institut für Pflanzenphysiologie der Justus-Liebig-Universität Gießen (JLU) hat nun gemeinsam mit einem Team in Berlin einen großen Schritt gemacht, um dies zu verstehen. Ihre Ergebnisse wurden in der Fachzeitschrift „Nature Plants“ veröffentlicht.

Phytochrome: Die "Augen" der Pflanzen

Phytochrome sind türkisfarbige Proteine, die in der Lage sind, Rot- und Infrarotlicht aufzunehmen. Obwohl Pflanzen keine Bilder ihrer Umwelt erstellen können, sind sie mit ihren Phytochromen dennoch fähig, äußerst schwaches Licht wahrzunehmen, sogar Farben zu unterscheiden. Sie erkennen somit Blätter in ihrer Nachbarschaft und können auf Bedrohung von Konkurrenten reagieren.

Architektur der Phytochrome an den MX-Beamlines von BESSY II entschlüsselt

Den Teams aus Gießen und Berlin ist es jetzt gelungen, die dreidimensionalen Strukturen von verschiedenen pflanzlichen Phytochrom-Molekülen zu entziffern. Darin sichtbar ist das Bilin-Pigment, womit das Photon – also Licht – aufgenommen wird, auch die chemischen Verbindungen zwischen dem Bilin und dem Protein sind erkennbar. Ein Teil des Bilin-Pigments dreht, wenn es durch Lichtenergie angeregt wird. Dies ändert die Wechselwirkung mit dem Protein, sodass ein Teil seiner Struktur auseinandergerissen und neu gebildet wird. Diese Änderungen wiederum schalten die Signalweiterleitung ein.
 
Die Phytochromstrukturen wurden mit Hilfe von röntgenkristallographischen Messungen am BESSY II-Synchrotron in Berlin erstellt. Die Gießener konnten verschiedene Phytochrom-Moleküle dazu bringen, dass sie in kleinen Tröpfchen mikroskopische, saphir-ähnliche Kristalle bilden. Bestrahlt man diese Kristalle mit hochintensivem Röntgenlicht, wie es am BESSY II erzeugt wird, erhält man sogenannte Diffraktionsmuster woraus die 3D-Strukturen errechnet und mit Hilfe weiterer Informationen Einzelheiten der molekularen Funktionsweise aufgeklärt werden konnten.

Prof. Hughes bedankt sich herzlich bei den beteiligten Wissenschaftlerinnen und Wissenschaftlern in Gießen und Berlin. „Mit unserer Grundlagenforschung wollen wir herausfinden, wie Phytochrome funktionieren. Dabei sind wir nun einen großen Schritt weitergekommen, aber es gibt noch eine Menge zu tun“, so Hughes. „Schon heute können wir jedoch mit gentechnischen Methoden das Phytochromsystem von Nutzpflanzen so verändern, dass die Pflanzen besser wachsen und bessere Ernten erzielt werden können.“

Die Arbeit wurde von der Deutschen Forschungsgemeinschaft (DFG) über den von der FU Berlin koordinierten DFG-Sonderforschungsbereich SFB 1078 „Protonation Dynamics in Protein Function“ finanziert, an dem die Arbeitsgruppe Hughes beteiligt ist.

Langtext aus der Presseinfo der Justus-Liebig-Universität Gießen

arö/Uni Gießen

  • Link kopieren

Das könnte Sie auch interessieren

  • Ultraschnelle Dissoziation von Molekülen an BESSY II analysiert
    Science Highlight
    02.12.2024
    Ultraschnelle Dissoziation von Molekülen an BESSY II analysiert
    Ein internationales Team hat an BESSY II erstmals beobachtet, wie schwere Moleküle (Bromchlormethan) in kleinere Fragmente zerfallen, wenn sie Röntgenlicht absorbieren. Mit einer neu entwickelten Analysemethode gelang es ihnen, die ultraschnelle Dynamik dieses Prozesses sichtbar zu machen. Dabei lösen die Röntgenphotonen einen „molekularen Katapulteffekt“ aus: Leichte Atomgruppen werden zuerst herausgeschleudert, ähnlich wie Geschosse, die von einem Katapult abgeschossen werden, während die schwereren Atome – Brom und Chlor – sich deutlich langsamer trennen.
  • Protonen gegen Krebs: Neue Forschungsbeamline für innovative Strahlentherapien
    Nachricht
    27.11.2024
    Protonen gegen Krebs: Neue Forschungsbeamline für innovative Strahlentherapien
    Das HZB hat gemeinsam mit der Universität der Bundeswehr München eine neue Beamline für die präklinische Forschung eingerichtet. Sie ermöglicht künftig am HZB Experimente an biologischen Proben zu innovativen Strahlentherapien mit Protonen.
  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.