Nutzerforschung an BESSY II: Neue Materialien steigern die Effizienz in Ethanol-Brennstoffzellen

Das Material besteht aus Nafion mit eingebetten Nanopartikeln.

Das Material besteht aus Nafion mit eingebetten Nanopartikeln. © B.Matos/IPEN

Eine Gruppe aus Brasilien hat mit einem HZB-Team eine neuartige Kompositmembran für Ethanol-Brennstoffzellen untersucht. Sie besteht aus dem Polymer Nafion, in das durch Schmelzextrusion Titanat-Nanopartikel eingebettet sind. An BESSY II konnten sie beobachten, wie die Nanopartikel in der Nafion-Matrix verteilt sind und wie sie die Protonenleitfähigkeit steigern.

Ethanol besitzt eine fünfmal höhere volumetrische Energiedichte als Wasserstoff und lässt sich gefahrlos in geeigneten Brennstoffzellen zur Stromerzeugung nutzen. Insbesondere in Brasilien besteht großes Interesse an Brennstoffzellen für Ethanol, das dort kostengünstig aus Zuckerrohr hergestellt werden kann. Theoretisch könnte der Wirkungsgrad einer Ethanol-Brennstoffzelle 96 Prozent betragen, aber in der Praxis liegt er selbst bei der höchsten Leistungsdichte nur bei 30 Prozent. Es gibt also noch viel Raum für Verbesserungen.

Nafion mit Nanopartikeln

Ein Team um Dr. Bruno Matos vom brasilianischen Forschungsinstitut IPEN erforscht deshalb neuartige Kompositmembranen für Direktethanol-Brennstoffzellen. Diese Kompositmembranen sollen die Polymerelektrolyten wie Nafion ersetzen. Matos und sein Team stellten nun mit einem Schmelzextrusionsverfahren Kompositmembranen auf der Basis von Nafion her. Dabei wurden in die Nafion-Matrix Titanat-Nanopartikel eingebettet, welche mit Sulfonsäuregruppen funktionalisiert wurden.

Protonenleitfähigkeit steigt

Matos und sein Team haben nun vier verschiedene Varianten dieser neuartigen Materialien an der Infrarot-Beamline IRIS bei BESSY II analysiert. Mit Infrarotspektroskopie beobachteten sie, dass sich chemische Brücken zwischen den Sulfonsäuregruppen der funktionalisierten Nanopartikel bildeten. Darüber hinaus stellten sie fest, dass die Protonenleitfähigkeit in der Kompositmembran erhöht war, selbst bei hohen Konzentrationen von Nanopartikeln.

Große Überraschung

"Das war eine echte Überraschung, die wir nicht erwartet hatten", sagt Dr. Ljiljana Puskar, HZB-Wissenschaftlerin an der IRIS-Beamline. Denn bisher war eine der Haupthürden bei der Entwicklung von Hochleistungsverbundwerkstoffen die Tatsache, dass sich mit steigender Konzentration der Nanopartikel die Protonenleitfähigkeit verringert. Die höhere Protonenleitfähigkeit könnte eine bessere Ladungsträgermobilität ermöglichen und damit die Effizienz der Direktethanol-Brennstoffzelle erhöhen.

"Diese Kompositmembran kann durch Schmelzextrusion hergestellt werden, was ihre Herstellung im industriellen Massstab ermöglichen würde", betont Matos.

arö


Das könnte Sie auch interessieren

  • Kleine Kraftpakete für ganz besonderes Licht
    Science Highlight
    27.06.2024
    Kleine Kraftpakete für ganz besonderes Licht
    Ein internationales Forschungsteam stellt in Nature Communications Physics das Funktionsprinzip einer neuen Quelle für Synchrotronstrahlung vor. Durch Steady-State-Microbunching (SSMB) sollen in Zukunft effiziente und leistungsstarke Strahlungsquellen für kohärente UV-Strahlung möglich werden. Das ist zum Beispiel für Anwendungen in der Grundlagenforschung, aber auch der Halbleiterindustrie sehr interessant.
  • Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Science Highlight
    24.06.2024
    Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Ein Team um Dr. Ioanna Mantouvalou hat eine Methode entwickelt, um die Verteilung von chemischen Elementen in Dentalmaterialien präziser als bisher möglich darzustellen. Die konfokale mikro-Röntgenfluoreszenzanalyse (micro-XRF) liefert dreidimensional aufgelöste Elementbilder, die Verzerrungen enthalten. Sie entstehen, wenn Röntgenstrahlen Materialien unterschiedlicher Dichte und Zusammensetzung durchdringen. Mit Mikro-CT-Daten, die detaillierte 3D-Bilder der Materialstruktur liefern, und chemischen Informationen aus Röntgenabsorptionsspektroskopie (XAS) - Experimenten im Labor (BLiX, TU Berlin) und an der Synchrotronstrahlungsquelle BESSY II haben die Forschenden das Verfahren nun verbessert.
  • Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Nachricht
    19.06.2024
    Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Am 17. Juni 2024 ist in Jena das Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) im Beisein von Wolfgang Tiefensee, Minister für Wirtschaft, Wissenschaft und Digitale Gesellschaft des Freistaates Thüringen, feierlich eröffnet worden. Das Institut wurde vom Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) in Kooperation mit der Friedrich-Schiller-Universität Jena gegründet: Es widmet sich der Entwicklung nachhaltiger Polymermaterialien für Energietechnologien. Diese sollen eine Schlüsselrolle bei der Energiewende spielen und Deutschlands Ziel unterstützen, bis 2045 klimaneutral zu werden.