Coronavirus SARS-CoV2: BESSY II-Daten beschleunigen die Suche nach Wirkstoffen

</p> <p>Schematische Darstellung der Coronavirus-Protease. Das Enzym kommt als Dimer bestehend aus zwei identischen Molek&uuml;len vor. Ein Teil des Dimers ist in Farbe dargestellt (gr&uuml;n und violett), der andere in grau. Das kleine Molek&uuml;l in gelb bindet an das aktive Zentrum der Protease und k&ouml;nnte als Blaupause f&uuml;r einen Hemmstoff dienen.

Schematische Darstellung der Coronavirus-Protease. Das Enzym kommt als Dimer bestehend aus zwei identischen Molekülen vor. Ein Teil des Dimers ist in Farbe dargestellt (grün und violett), der andere in grau. Das kleine Molekül in gelb bindet an das aktive Zentrum der Protease und könnte als Blaupause für einen Hemmstoff dienen. © H. Tabermann/HZB

Kurzfilm: Ein wichtiges Protein des SARS-CoV2-Virus ist an BESSY II entschlüsselt worden. Damit können schneller wirksame Gegenmittel entwickelt werden. © HG Medien/HZB

02:56

Ein Coronavirus hält die Welt in Atem. SARS-CoV-2  ist hochansteckend und kann schwere Lungenentzündung mit Atemnot (COVID-19) verursachen. Weltweit sucht die medizinische Forschung nach Möglichkeiten, wie man die Vermehrung der Viren mithilfe von Medikamenten verhindern kann. Ein Team der Universität Lübeck und am Helmholtz-Zentrum für Infektionsforschung (HZI) hat dafür einen vielversprechenden Ansatz gefunden. Mithilfe des hochintensiven Röntgenlichts der Berliner Synchrotronquelle BESSY II haben sie die dreidimensionale Architektur der viralen Hauptprotease von SARS-CoV-2 entschlüsselt. Die virale Hauptprotease ist an der Vermehrung des Virus beteiligt.

Weltweit forschen Teams daran, Wirkstoffe gegen SARS-CoV-2 zu entwickeln. Wichtig ist dafür die Strukturanalyse von Makromolekülen, die im Virus eine Funktion ausüben. Diese Funktion hängt eng mit der dreidimensionalen Architektur des Makromoleküls zusammen. Kennt man diese dreidimensionale Architektur, kann man gezielt Angriffspunkte für Wirkstoffe identifizieren.

Vermehrung der Viren stoppen

An der Vermehrung der Viren ist ein spezielles Protein beteiligt: die virale Hauptprotease (Mpro oder auch  3CLpro). Nun hat ein Team um Prof. Dr. Rolf Hilgenfeld, Universität Lübeck, die dreidimensionale Architektur der Hauptprotease von SARS-CoV-2 entschlüsselt. Die Forscher haben dafür das hochintensive Röntgenlicht der Anlage BESSY II des Helmholtz-Zentrum Berlin genutzt.

Fast-Track-Zugang zu BESSY II

„Speziell für solche hochaktuellen Fragestellungen ermöglichen wir einen Fast-Track-Zugang zu unseren Instrumenten“, sagt Dr. Manfred Weiss, der die Gruppe makromolekulare Kristallographie am HZB leitet. An den sogenannten MX-Instrumenten, die die Gruppe betreut, können winzigste Proteinkristalle mit hochbrillantem Röntgenlicht durchleuchtet werden. Die Bilder enthalten Informationen zur dreidimensionalen Architektur der Proteinmoleküle. Mit Hilfe von Computerprogrammen lassen sich die komplexe Gestalt des Proteinmoleküls sowie seine Elektronendichte berechnen.

Ergebnisse helfen bei der Wirkstoffentwicklung

Daraus ergeben sich nun konkrete Ansatzpunkte, um Wirkstoffe zu entwickeln. Diese könnten gezielt an Schwachstellen des Makromoleküls andocken und seine Funktion behindern. Rolf Hilgenfeld ist ein weltweit anerkannter Experte auf dem Gebiet der Virologie und hat bereits während der SARS-Pandemie 2002/2003 einen Hemmstoff gegen diese Virensorte entwickelt. 2016 gelang es ihm, ein Enzym des Zikavirus zu entschlüsseln.

 

Die Arbeit ist am 20. März  2020 in Science erschienen: Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Linlin Zhang, Daizong Lin, Xinyuanyuan Sun, Ute Curth, Christian Drosten, Lucie Sauerhering, Stephan Becker, Katharina Rox, Rolf Hilgenfeld

DOI: 10.1126/science.abb3405


arö


Das könnte Sie auch interessieren

  • Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Science Highlight
    17.07.2024
    Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Die besonderen Eigenschaften von magnetischen Materialien aus der Gruppe der Seltenen Erden gehen auf Elektronen in der 4f-Schale zurück. Bislang galten die magnetischen Eigenschaften der 4f-Elektronen als kaum kontrollierbar. Nun hat ein Team von HZB, der Freien Universität Berlin und weiteren Einrichtungen erstmals gezeigt, dass durch Laserpulse 4f-Elektronen beeinflusst – und damit deren magnetische Eigenschaften verändert werden können. Die Entdeckung, die durch Experimente am EuXFEL und FLASH gelang, weist einen neuen Weg zu Datenspeichern mit Seltenen Erden.
  • HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Nachricht
    09.07.2024
    HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Auf der Suche nach dem perfekten Katalysator bekommt HZB-Forscher Robert Seidel nun Rückenwind – durch einen hochkarätigen ERC Consolidator Grant. In der Titelgeschichte stellen wir vor, warum die Röntgenquelle BESSY II für sein Vorhaben eine wichtige Rolle spielt.

  • BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Science Highlight
    09.07.2024
    BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Feststoffbatterien können mehr Energie speichern und sind sicherer als Batterien mit flüssigen Elektrolyten. Allerdings halten sie nicht so lange und ihre Kapazität nimmt mit jedem Ladezyklus ab. Doch das muss nicht so bleiben: Forscherinnen und Forscher sind den Ursachen bereits auf der Spur. In der Fachzeitschrift ACS Energy Letters stellt ein Team des HZB und der Justus-Liebig-Universität Gießen eine neue Methode vor, um elektrochemische Reaktionen während des Betriebs einer Feststoffbatterie mit Photoelektronenspektroskopie an BESSY II genau zu verfolgen. Die Ergebnisse helfen, Batteriematerialien und -design zu verbessern.