Röntgenmikroskopie an BESSY II: Nanopartikel können Zellen verändern

Kombination der einzelnen Aufnahmen zu einem 3D-Bild der Zellarchitektur mit Mitochondrien (grün), Lysosomen (lila), multivesikulären Körperchen (rot) und dem endoplasmatischen Retikulum (beige).

Kombination der einzelnen Aufnahmen zu einem 3D-Bild der Zellarchitektur mit Mitochondrien (grün), Lysosomen (lila), multivesikulären Körperchen (rot) und dem endoplasmatischen Retikulum (beige). © Burcu Kepsutlu/HZB

Die Aufnahmen zeigen: Nach Aufnahme von Nanopartikeln (rechtes Bild) gibt es in der Zelle weniger Lipidtr&ouml;pfchen (blau) und multivesikul&auml;re K&ouml;rperchen (rosa) und daf&uuml;r mehr Mitochondrien (gr&uuml;n) und Endosomen (gelb).</p> <p></p> <p>

Die Aufnahmen zeigen: Nach Aufnahme von Nanopartikeln (rechtes Bild) gibt es in der Zelle weniger Lipidtröpfchen (blau) und multivesikuläre Körperchen (rosa) und dafür mehr Mitochondrien (grün) und Endosomen (gelb).

© James McNally/HZB

</p> <p>Lipidtr&ouml;pfchen (blau) mit Nanopartikeln (orange).

Lipidtröpfchen (blau) mit Nanopartikeln (orange). © HZB

Nanopartikel dringen leicht in Zellen ein. Wie sie sich dort verteilen und was sie bewirken, zeigen nun erstmals hochaufgelöste 3D-Mikroskopie-Aufnahmen an den Synchrotronlichtquellen BESSY II und ALBA. So reichern sich bestimmte Nanopartikel bevorzugt in bestimmten Organellen der Zelle an. Dadurch kann der Energieumsatz in der Zelle steigen. „Die Zelle sieht aus wie nach einem Marathonlauf, offensichtlich kostet es Energie, solche Nanopartikel aufzunehmen“, sagt Hauptautor James McNally.

Nanopartikel sind heute nicht nur in Kosmetikprodukten, sondern überall, in der Luft, im Wasser, im Boden und in der Nahrung. Weil sie so winzig sind, dringen sie leicht in Zellen unseres Körpers ein. Das ist auch für medizinische Anwendungen interessant: Mit Wirkstoffen beschichtete Nanopartikel könnten gezielt in Zellen eingeschleust werden, zum Beispiel, um Krebszellen zu zerstören. Vieles ist jedoch noch kaum erforscht: zum Beispiel, wie sich Nanopartikel in den Zellen verteilen, was sie dort bewirken und wie diese Wirkung von ihrer Größe und Beschichtung abhängt.

Überblick über die gesamte Zelle

Neue Erkenntnisse hat nun eine Studie an BESSY II gebracht, wo Prof. Gerd Schneiders Team mit weicher, intensiver Röntgenstrahlung Röntgenmikroskopie-Aufnahmen durchführen kann. Eine Gruppe um den HZB Biophysiker Dr. James McNally hat Zellen mit unterschiedlich beschichteten Nanopartikeln eingehend mit Röntgenmikroskopie untersucht. Die Nanopartikel waren exakt gleich groß, aber mit unterschiedlichen Wirkstoffen beschichtet. „Die Röntgenmikroskopie bietet deutlich bessere Auflösungen als die Lichtmikroskopie und einen viel besseren Überblick als die Elektronenmikroskopie“, betont Schneider. Einige Proben wurden auch an der MISTRAL-Beamline von ALBA, Barcelona, untersucht.

Anreicherung in Organellen

So erhielten sie erstmals vollständige, dreidimensionale hochaufgelöste Aufnahmen der Zellen mit den darin enthaltenen Organellen darunter Lipidtröpfchen, multivesikuläre Körper, Mitochondrien und Endosomen. Lipidtröpfchen fungieren in der Zelle als Energiespeicher, während Mitochondrien diese Energie verstoffwechseln. Die Analyse der Aufnahmen zeigte: Die Nanopartikel reichern sich bevorzugt in Zellorganellen an und verändern dann die Zahl bestimmter Organellen zu Gunsten anderer Organellen. Diese Veränderungen waren nahezu unabhängig von der jeweiligen Beschichtung der Nanopartikel. Dies lässt vermuten, dass unterschiedliche Beschichtungen ähnliche Effekte haben könnten.  Ob sich dieser Effekt verallgemeinern lässt, müssen weitere Studien mit anderen Arten von Nanopartikeln und insbesondere auch anderen Zell-Typen zeigen.

Energiespeicher nehmen ab

„Die Röntgenmikroskopie erlaubt es, die Zelle als Ganzes zu überblicken, so dass wir diese Eigenheit erstmals beobachten konnten“, erklärt McNally. „Dabei fanden wir, dass die Aufnahme von Nanopartikeln die Anzahl von Mitochondrien und Endosomen erhöht, während andere Organellen, nämlich Lipidtröpfchen und multivesikuläre Körper abnehmen“, sagt Burcu Kepsutlu, die für ihre Promotion die Experimente durchführte.

Wenn wir eine Hungerkur machen oder einen Marathon laufen, sehen wir ähnliche Veränderungen in der Zelle - nämlich eine Zunahme der Mitochondrien und eine Abnahme der Lipidtröpfchen“, sagt McNally. „Es kostet die Zelle offenbar Energie, die Nanopartikel aufzunehmen, sie fühlt sich dann wie nach einem Marathonlauf.“

ACS Nano (2020): Cells Undergo Major Changes in the Quantity of Cytoplasmic Organelles after Uptake of Gold Nanoparticles with Biologically Relevant Surface Coatings, Burcu Kepsutlu, Virginia Wycisk, Katharina Achazi, Sergey Kapishnikov, Ana Joaquina Pérez-Berná, Peter Guttmann, Antje Cossmer, Eva Pereiro, Helge Ewers, Matthias Ballauff, Gerd Schneider, James G. McNally

DOI: 10.1021/acsnano.9b09264

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Trillium-Gitter in Langbeiniten ermöglicht Quantenphänomen
    Science Highlight
    23.08.2024
    Trillium-Gitter in Langbeiniten ermöglicht Quantenphänomen
    In der Materialklasse der Langbeinite wurde eine 3D-Quantenspinflüssigkeit entdeckt. Gründe für dieses ungewöhnliche Verhalten liegen in der kristallinen Struktur und den dadurch bedingten besonderen magnetischen Wechselwirkungen. Dies hat nun ein internationales Team durch Experimente an der Neutronenquelle ISIS und theoretische Modellierungen an einer Nickel-Langbeinit-Probe gezeigt.
  • Grüner Wasserstoff: 'Künstliches Blatt' wird unter Druck besser
    Science Highlight
    31.07.2024
    Grüner Wasserstoff: 'Künstliches Blatt' wird unter Druck besser
    Wasserstoff kann in speziellen Anlagen über die elektrolytische Aufspaltung von Wasser erzeugt werden. Dabei ist eine Option die Verwendung von Photoelektroden, die Sonnenlicht in Spannung für die Elektrolyse umwandeln. Nun zeigt ein Forschungsteam am HZB, dass die Effizienz solcher photoelektrochemischen Zellen (PEC-Zellen) unter Druck noch deutlich steigen kann.
  • Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Science Highlight
    17.07.2024
    Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Die besonderen Eigenschaften von magnetischen Materialien aus der Gruppe der Seltenen Erden gehen auf Elektronen in der 4f-Schale zurück. Bislang galten die magnetischen Eigenschaften der 4f-Elektronen als kaum kontrollierbar. Nun hat ein Team von HZB, der Freien Universität Berlin und weiteren Einrichtungen erstmals gezeigt, dass durch Laserpulse 4f-Elektronen beeinflusst – und damit deren magnetische Eigenschaften verändert werden können. Die Entdeckung, die durch Experimente am EuXFEL und FLASH gelang, weist einen neuen Weg zu Datenspeichern mit Seltenen Erden.