Dünnschichtsolarzellen aus CIGSe: EU-Projekt Sharc25 steigert Wirkungsgrade

Die Arbeiten am EU Projekt Sharc25 fanden auch im EMIL-Labor statt, wo Dünnschichten und Materialien mit Röntgenstrahlung von BESSY II analysiert werden können.

Die Arbeiten am EU Projekt Sharc25 fanden auch im EMIL-Labor statt, wo Dünnschichten und Materialien mit Röntgenstrahlung von BESSY II analysiert werden können. © Ingo Kniest/HZB

Dünnschichtsolarzellen aus Kupfer, Indium, Gallium und Selen (CIGSe) sind kostengünstig in der Herstellung und erreichen nun Wirkungsgrade von deutlich mehr als 20 Prozent. Dies wurde durch Nachbehandlungen mit Alkali-Elementen erreicht, die auch für eine industrielle Produktion geeignet sind. Ergebnisse zur Wirkungsweise dieser Alkali-Nachbehandlungen aus dem EU-Projekt Sharc25 sind nun in Advanced Energy Materials publiziert.

Dünnschichtsolarmodule benötigen sehr viel weniger Energie für ihre Herstellung als herkömmliche Si-Wafer–basierte PV Module. Deshalb ist ihre Energy-Payback-Time viel kürzer.  Die Energy-Payback-Time ist die Zeit, bis ein PV-Modul so viel Energie produziert hat wie für seine Herstellung nötig war. Eine wichtige Materialklasse für die Dünnschicht-PV sind Chalkopyrit-Verbindungen aus Kupfer, Indium, Gallium und Selen (CIGSe). Diese Elemente werden durch Ko-Verdampfung auf einem Substrat aufgewachsen – und da CIGSe das Licht sehr viel besser absorbiert als Silizium, reicht schon eine sehr dünne Schicht aus, um Licht effizient in elektrische Energie umzuwandeln.

Steigerung auf 22,6 Prozent

Im Rahmen des europäischen Forschungsprojekts Sharc 25 gelang es nun, den Wirkungsgrad von CIGSe-Solarzellen von 21.7 Prozent auf 22.6 Prozent zu steigern.

Ein Fokus des Projektes war es, insbesondere die positiven Effekte der Nachbehandlungen mit Alkali-Elementen wie Kalium, Rubidium, oder Cäsium zu verstehen. Während der Nachbehandlung werden die chemischen und elektronischen Oberflächeneigenschaften des CIGSe Absorbers verändert. Zusätzlich wandern die Alkali-Atome von der Oberfläche in die Korngrenzen zwischen den CIGSe Kristallen und optimieren so offenbar die elektronischen Eigenschaften der Dünnschicht, u.a. wird die Rekombination von Ladungsträgern im CIGSe Volumen verringert. Das funktioniert für CIGSe-Schichten, die bei verschiedenen Temperaturen und auf unterschiedlichen Substraten präpariert werden.

Vorsprung für die Industrie der EU

Am EU-Projekt Sharc25 haben elf Forschungseinrichtungen aus acht Ländern zusammengearbeitet, darunter auch ein HZB-Team um Prof. Marcus Bär. Ein wichtiges Ziel war es dabei, die europäische Vorreiterrolle auf dem Gebiet der Dünnschicht-PV zu sichern. „Dabei gewinnt man in solchen großen EU Projekten speziell Erfahrung darin, mit Werkzeugen der grundlagenorientierten Forschung auch Fragen der industrienahen Material– und Bauteiloptimierung effizient zu bearbeiten. Das ist ein echter Wettbewerbsvorteil und wahrt den Erkenntnis – und Know-how Vorsprung“, meint Bär.

Die Ergebnisse sind in Adv. Energy Materials (2020) publiziert: "Heavy alkali treatment of Cu(In,Ga)Se2 solar cells: Surface versus bulk effects"

DOI: 10.1002/aenm.201903752

Mehr zum Projekt: http://sharc25.eu/

Das Projekt wurde durch das EU-Programm Horizon 2020 unter der Nr. 64100 gefördert.

red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II haben nun ein Team von Wissenschaftlern mehrerer chinesischer Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Science Highlight
    28.10.2024
    Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.
  • Rutger Schlatmann in den Vorstand von ETIP PV wiedergewählt
    Nachricht
    24.10.2024
    Rutger Schlatmann in den Vorstand von ETIP PV wiedergewählt
    ETIP PV ist ein Fach-Gremium, das die Europäische Kommission zu Photovoltaik berät. Nun hat der ETIP PV-Lenkungsausschuss einen neuen Vorsitzenden sowie zwei stellvertretende Vorsitzende für die Amtszeit 2024–2026 gewählt. Rutger Schlatmann, Bereichssprecher Solare Energie am HZB und Professor an der HTW Berlin, wurde als Vorsitzender wiedergewählt.