Dünnschichtsolarzellen aus CIGSe: EU-Projekt Sharc25 steigert Wirkungsgrade

Die Arbeiten am EU Projekt Sharc25 fanden auch im EMIL-Labor statt, wo Dünnschichten und Materialien mit Röntgenstrahlung von BESSY II analysiert werden können.

Die Arbeiten am EU Projekt Sharc25 fanden auch im EMIL-Labor statt, wo Dünnschichten und Materialien mit Röntgenstrahlung von BESSY II analysiert werden können. © Ingo Kniest/HZB

Dünnschichtsolarzellen aus Kupfer, Indium, Gallium und Selen (CIGSe) sind kostengünstig in der Herstellung und erreichen nun Wirkungsgrade von deutlich mehr als 20 Prozent. Dies wurde durch Nachbehandlungen mit Alkali-Elementen erreicht, die auch für eine industrielle Produktion geeignet sind. Ergebnisse zur Wirkungsweise dieser Alkali-Nachbehandlungen aus dem EU-Projekt Sharc25 sind nun in Advanced Energy Materials publiziert.

Dünnschichtsolarmodule benötigen sehr viel weniger Energie für ihre Herstellung als herkömmliche Si-Wafer–basierte PV Module. Deshalb ist ihre Energy-Payback-Time viel kürzer.  Die Energy-Payback-Time ist die Zeit, bis ein PV-Modul so viel Energie produziert hat wie für seine Herstellung nötig war. Eine wichtige Materialklasse für die Dünnschicht-PV sind Chalkopyrit-Verbindungen aus Kupfer, Indium, Gallium und Selen (CIGSe). Diese Elemente werden durch Ko-Verdampfung auf einem Substrat aufgewachsen – und da CIGSe das Licht sehr viel besser absorbiert als Silizium, reicht schon eine sehr dünne Schicht aus, um Licht effizient in elektrische Energie umzuwandeln.

Steigerung auf 22,6 Prozent

Im Rahmen des europäischen Forschungsprojekts Sharc 25 gelang es nun, den Wirkungsgrad von CIGSe-Solarzellen von 21.7 Prozent auf 22.6 Prozent zu steigern.

Ein Fokus des Projektes war es, insbesondere die positiven Effekte der Nachbehandlungen mit Alkali-Elementen wie Kalium, Rubidium, oder Cäsium zu verstehen. Während der Nachbehandlung werden die chemischen und elektronischen Oberflächeneigenschaften des CIGSe Absorbers verändert. Zusätzlich wandern die Alkali-Atome von der Oberfläche in die Korngrenzen zwischen den CIGSe Kristallen und optimieren so offenbar die elektronischen Eigenschaften der Dünnschicht, u.a. wird die Rekombination von Ladungsträgern im CIGSe Volumen verringert. Das funktioniert für CIGSe-Schichten, die bei verschiedenen Temperaturen und auf unterschiedlichen Substraten präpariert werden.

Vorsprung für die Industrie der EU

Am EU-Projekt Sharc25 haben elf Forschungseinrichtungen aus acht Ländern zusammengearbeitet, darunter auch ein HZB-Team um Prof. Marcus Bär. Ein wichtiges Ziel war es dabei, die europäische Vorreiterrolle auf dem Gebiet der Dünnschicht-PV zu sichern. „Dabei gewinnt man in solchen großen EU Projekten speziell Erfahrung darin, mit Werkzeugen der grundlagenorientierten Forschung auch Fragen der industrienahen Material– und Bauteiloptimierung effizient zu bearbeiten. Das ist ein echter Wettbewerbsvorteil und wahrt den Erkenntnis – und Know-how Vorsprung“, meint Bär.

Die Ergebnisse sind in Adv. Energy Materials (2020) publiziert: "Heavy alkali treatment of Cu(In,Ga)Se2 solar cells: Surface versus bulk effects"

DOI: 10.1002/aenm.201903752

Mehr zum Projekt: http://sharc25.eu/

Das Projekt wurde durch das EU-Programm Horizon 2020 unter der Nr. 64100 gefördert.

red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Zwei Humboldt-Fellows am HZB
    Nachricht
    09.12.2024
    Zwei Humboldt-Fellows am HZB
    Zwei junge Wissenschaftler sind zurzeit als Humboldt-Postdoktoranden am HZB tätig. Kazuki Morita bringt seine Expertise in Modellierung und Datenanalyse in die Solarenergieforschung im Team von Prof. Antonio Abate ein. Qingping Wu ist Experte für Batterieforschung und arbeitet mit Prof. Yan Lu zusammen an Lithium-Metall-Batterien mit hoher Energiedichte.

  • Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Science Highlight
    05.12.2024
    Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Für die Produktion von Wasserstoff mit Elektrolyse werden Iridiumbasierte Katalysatoren benötigt. Nun zeigt ein Team am HZB und an der Lichtquelle ALBA, dass die neu entwickelten P2X-Katalysatoren, die mit nur einem Viertel des Iridiums auskommen, ebenso effizient und langzeitstabil sind wie die besten kommerziellen Katalysatoren. Messungen an BESSY II haben nun ans Licht gebracht, wie die besondere chemische Umgebung im P2X-Kat während der Elektrolyse die Wasserspaltung befördert.
  • Protonen gegen Krebs: Neue Forschungsbeamline für innovative Strahlentherapien
    Nachricht
    27.11.2024
    Protonen gegen Krebs: Neue Forschungsbeamline für innovative Strahlentherapien
    Das HZB hat gemeinsam mit der Universität der Bundeswehr München eine neue Beamline für die präklinische Forschung eingerichtet. Sie ermöglicht künftig am HZB Experimente an biologischen Proben zu innovativen Strahlentherapien mit Protonen.