Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung

Dr. Simon Krause (Universität Groningen, 1.v.l.) und Dr. Felix Willems (TU Berlin und Max-Born-Institut, 3.v.l.) erhielten den Ernst Eckhard Koch Preis für ihre herausragenden Dissertationen.

Dr. Simon Krause (Universität Groningen, 1.v.l.) und Dr. Felix Willems (TU Berlin und Max-Born-Institut, 3.v.l.) erhielten den Ernst Eckhard Koch Preis für ihre herausragenden Dissertationen. © M. Setzpfand/HZB

Der Preis für Innovationen in der Synchrotronforschung ging an die PSI-Forscher Dr. Aldo Mozzanica (2.v.l), Dr. Bernd Schmitt (3.v.l.) und Prof. Dr. Heinz Graafsma (4.v.l, DESY). Überreicht wurde er durch Prof. Dr. Mathias Richter (5.v.l.) vom Freundeskreis des HZB. Die Laudatio hielt Prof. Dr. Edgar Weckert, DESY (1.v.l.)

Der Preis für Innovationen in der Synchrotronforschung ging an die PSI-Forscher Dr. Aldo Mozzanica (2.v.l), Dr. Bernd Schmitt (3.v.l.) und Prof. Dr. Heinz Graafsma (4.v.l, DESY). Überreicht wurde er durch Prof. Dr. Mathias Richter (5.v.l.) vom Freundeskreis des HZB. Die Laudatio hielt Prof. Dr. Edgar Weckert, DESY (1.v.l.) © M. Setzpfand/HZB

In diesem Jahr zeichnete der Freundeskreis des HZB gleich zwei herausragende Promotionsarbeiten mit dem Ernst-Eckhard-Koch-Preis aus. Der Europäische Innovationspreis Synchrotronstrahlung ging an ein Team aus Physikern des DESY und des Paul-Scherrer-Instituts. Die Preisverleihung  fand auf dem diesjährigen Nutzertreffen des HZB statt, das mit über 500 Teilnehmerinnen und Teilnehmern und mehr als 50 Ausstellern sehr gut besucht war.

In diesem Jahr hatte die Jury sich entschieden, aus den acht hervorragenden Vorschlägen zwei Doktorarbeiten mit dem Ernst-Eckhard-Koch-Preis auszuzeichnen: Dr. Simon Krause, Universität Groningen, Niederlande, und Dr. Felix Willems, Technische Universität Berlin und Max-Born-Institut. Beide Arbeiten würden sowohl vom Umfang als auch von der Qualität weit über die üblichen Anforderungen an eine Dissertation hinausragen, zitierte der Vorsitzende des HZB-Freundeskreises, Prof. Dr. Mathias Richter, PTB, die Jury.

Simon Krause hatte das Gas-Adsoprtionsverhalten in porösen Festkörpern, so genannten "Metal Organic Frameworks" (MOF) mit Methoden der Synchrotronstrahlung und mit Neutronen untersucht und seine Arbeit auf dem Nutzertreffen in einem Vortrag ("X-rays and neutrons shed light on negative gas adsorption mechanism in flexible metal-organic frameworks") vorgestellt.

Felix Willems befasste sich in seiner Promotion mit ultraschnellen Schaltprozessen und ihrer Analyse mit Hilfe spektroskopischer Methoden an Synchrotronquellen wie BESSY II und erläuterte seine Ergebnisse mit einem Kurzvortrag zu "Unraveling microscopic processes in ultrafast magnetisation dynamics using XUV magnetic circular dichroism spectroscopy.

Innovationspreis Synchrotronstrahlung 2019

Der Innovationspreis Synchrotronstrahlung 2019 ging an Prof. Dr. Heinz Graafsma, DESY, sowie an Dr. Aldo Mozzanica und Dr. Bernd Schmitt , beide vom Paul-Scherrer-Institut, Schweiz. Die Physiker hatten gemeinsam einen neuen ultraschnellen Röntgen-Detektor für Freie Elektronen Laser entwickelt. Das AGIPD-System (Adaptive Gain integrating Pixel Detector) wird bereits am European XFEL eingesetzt. Der Innovationspreis Synchrotronstrahlung ist mit 3000 Euro dotiert und wird von der SPECS GmbH und der BESTEC GmbH gesponsert.

Heinz Graafsma erklärt das AGIPD-System so:

Für Speicherringe werden bisher so genannte "Photon Counting"-Pixeldetektoren verwendet, bei denen die Photonen nacheinander ankommen und das Signal jedes Photons verarbeitet wird. Für FELs ist dies keine Option, da in einem einzigen 100 fsec Impuls viele Photonen am Detektor ankommen und somit nicht einzeln verarbeitet werden können. Das bedeutet, dass man für FELs sogenannte "integrierende" Detektoren verwenden muss.

Bisher musste man sich entscheiden. Entweder den integrierenden Detektor sehr empfindlich zu machen, d.h. eine hohe Verstärkung zu haben, um von einem einzelnen Photon erzeugte Signale erkennen zu können, oder den integrierenden Detektor nicht sehr empfindlich zu machen, d.h. eine niedrige Verstärkung zu haben, um mit Signalen fertig zu werden, die von einer großen Menge von Photonen erzeugt werden. Aber man konnte nicht beides haben.

Um dieses Problem zu lösen, haben wir ein Konzept eines zweidimensionalen Detektors entwickelt und implementiert, bei dem für jedes einzelne Pixel vollautomatisch die Verstärkung entsprechend der Eingangssignalstärke angepasst wird. Daher der Name "adaptive gain integrating pixel detectors".

Dadurch kann man in einem einzigen Aufnahmeversuch an den FELs nun ein Bild über seinen gesamten Dynamikbereich aufnehmen. Dies führt zu einer deutlich verbesserten Datenqualität und damit zu besseren wissenschaftlichen Ergebnissen.

Für den European XFEL gab es eine zusätzliche Herausforderung, nämlich die extrem hohe Wiederholrate von 4,5 MHz, mehr als 3 Größenordnungen mehr als je zuvor. Dazu wurde in jedem Pixel ein 352 tiefer analoger Speicher implementiert, was AGIPD zur schnellsten Röntgenkamera mit hohem Dynamikbereich der Welt macht.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Science Highlight
    04.11.2024
    BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.
  • Martin Keller zum neuen Präsidenten der Helmholtz-Gemeinschaft gewählt
    Nachricht
    30.10.2024
    Martin Keller zum neuen Präsidenten der Helmholtz-Gemeinschaft gewählt
    Die Helmholtz-Gemeinschaft hat den international renommierten Wissenschaftler Martin Keller aus den USA als neuen Präsidenten gewonnen. Keller lebt seit fast drei Jahrzehnten in den USA und hatte dort verschiedene wissenschaftliche Leitungspositionen in führenden Institutionen inne. Derzeit leitet er das National Renewable Energy Laboratory (NREL) in Golden, Colorado. Seine Amtszeit bei Helmholtz beginnt am 1. November 2025.