Mehr Informationen aus Mikroskopie-Abbildungen durch Rechenleistung

Am 27.11.2019 fand am HZB das Auftakttreffen des Helmholtz-Inkubator-Projekts Ptychography 4.0 statt. Sieben Helmholtz-Zentren wollen gemeinsam Methoden der Datenwissenschaft weiter entwickeln, um mehr Informationen aus Elektronen- und Röntgenmikroskopie zu gewinnen. Insbesondere geht es darum, mit „virtuellen Linsen“ Abbildungsfehler zu korrigieren und so das Auflösungsvermögen deutlich zu steigern.

Ptychography 4.0 gehört zu den Pilotprojekten des Inkubator-Förderprogramms im Bereich Information und Datenwissenschaften und wird aus dem Impuls- und Vernetzungsfonds des Präsidenten der Helmholtz-Gemeinschaft mit knapp 1,7 Millionen Euro gefördert. Die Helmholtz-Zentren beteiligen sich mit Eigenmitteln in gleicher Höhe.

„Mit der Ptychographie 4.0 arbeiten wir daran, die Auflösung in der Elektronenmikroskopie, aber auch in der Röntgenmikroskopie deutlich zu steigern, indem wir Abbildungsfehler rechnerisch korrigieren“, erläutert Dr. Markus Wollgarten, der am HZB das CoreLab für Korrelative Spektroskopie und Mikroskopie leitet. So wäre es zum Beispiel möglich, feinste Oberflächenstrukturen in Bakterien oder Viren extrem scharf darzustellen oder neue Materialien wie Graphen atomar genau abzubilden, ohne dass man auf kostspielige Korrektor-Optiken zurückgreifen muss.

Bei konventionellen Mikroskopieverfahren wird Licht (oder ein Elektronenstrahl) durch die Probe geschickt, ein Detektor misst dahinter die verbleibenden Intensitäten und man erhält so ein Bild der Probe. Dabei geht jedoch die wertvolle Information über die probenbedingte Phasenänderung der Strahlung verloren. Bei der Ptychographie 4.0 wird diese Information rechnerisch berücksichtigt und ausgewertet. Dies erfordert zwar Datenraten im Bereich von Gigabyte/Sekunde, erlaubt aber dann, die Probenstruktur mit großer Genauigkeit rechnerisch zu rekonstruieren. Abbildungsfehler des Mikroskops spielen dabei praktisch keine Rolle.

Die Kooperationspartner wollen nun diesen Ansatz weiter entwickeln und die Methode für den Routineeinsatz mit verschiedenen Strahlungsarten, wie beispielsweise Röntgenstrahlung, Elektronen oder XUV Licht, optimieren. Insbesondere soll die Bildrekonstruktion so stark beschleunigt werden, dass Abbildungen in Echtzeit möglich sind.

„Mit Ptychographie 4.0 umgehen wir limitierende Abbildungsfehler, so dass wir auf die sehr kostenintensiven physikalischen Korrektor-Optiken verzichten können – damit werden sich künftig wesentlich mehr Einrichtungen state-of-the-art Hochauflösungsmikroskopie leisten können“, betont Wollgarten.

Partner:
Deutsches Elektronen-Synchrotron (DESY)
Forschungszentrum Jülich (FZJ)
Helmholtz Institut Jena (GSI, HI-Jena)
Helmholtz Zentrum München (HMGU)
Helmholtz-Zentrum Berlin (HZB)
Helmholtz-Zentrum Dresden-Rossendorf (HZDR)
Helmholtz-Zentrum für Infektionsforschung (HZI)

Koordination:
PD Dr. Wolfgang zu Castell
Helmholtz Zentrum München (HMGU)
castell@helmholtz-muenchen.de
Prof. Dr. Christian Schroer
Deutsches Elektronen-Synchrotron (DESY)
christian.schroer@desy.de

Am HZB sind neben Dr. Markus Wollgarten auch Prof. Dr. Gerd Schneider (Röntgenmikroskopie) sowie Ants Finke (IT-Abteilung) beteiligt.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • KI-Einsatz in der Chemie: Studie zeigt Stärken und Schwächen
    Nachricht
    04.06.2025
    KI-Einsatz in der Chemie: Studie zeigt Stärken und Schwächen
    Wie gut ist künstliche Intelligenz im Vergleich zu menschlichen Fachleuten? Ein Forschungsteam des HIPOLE Jena hat diese Frage im Bereich der Chemie untersucht: Mithilfe eines neu entwickelten Prüfverfahrens namens „ChemBench“ verglichen die Forschenden die Leistung moderner Sprachmodelle wie GPT-4 mit der von erfahrenen Chemikerinnen und Chemikern. 

  • TH Wildau und Helmholtz-Zentrum Berlin besiegeln umfassende Kooperation
    Nachricht
    30.05.2025
    TH Wildau und Helmholtz-Zentrum Berlin besiegeln umfassende Kooperation
    Am 21. Mai 2025 unterzeichneten die Technische Hochschule Wildau (TH Wildau) und das Helmholtz-Zentrum Berlin einen umfassenden Kooperationsvertrag. Ziel ist es, die Vernetzung und Zusammenarbeit insbesondere in der Grundlagenforschung weiter zu fördern, die wissenschaftliche Exzellenz beider Partner zu steigern und Kompetenznetzwerke in Forschung, Lehre sowie der Ausbildung des wissenschaftlichen Nachwuchses zu entwickeln.

  • Grüner Wasserstoff: MXene steigert die Wirkung von Katalysatoren
    Science Highlight
    29.05.2025
    Grüner Wasserstoff: MXene steigert die Wirkung von Katalysatoren
    An den enorm großen inneren Oberflächen von MXenen können sich katalytisch aktive Partikel anheften. Mit diesem raffinierten Trick lässt sich ein preiswerter und viel effizienterer Katalysator für die Sauerstoffentwicklungsreaktion realisieren, die bei der Erzeugung von grünem Wasserstoff bislang als Engpass gilt. Dies hat eine internationale Forschergruppe um die HZB-Chemikerin Michelle Browne nun in einer aufwendigen Untersuchung nachgewiesen. Die Studie ist in Advanced Functional Materials veröffentlicht.