„Tanzmuster“ von Skyrmionen vermessen

Die Illustration zeigt Sykrmionen in einer ihrer Eigenschwingungen. Hier drehen sie im Uhrzeigersinn.

Die Illustration zeigt Sykrmionen in einer ihrer Eigenschwingungen. Hier drehen sie im Uhrzeigersinn. © Yotta Kippe/HZB

In bestimmten magnetischen Materialien wie Cu2OSeO3 entstehen magnetische Wirbel, so genannte Skyrmionen. Diese Skyrmionen lassen sich durch niedrige elektrische Ströme kontrollieren, was eine energiesparende Datenverarbeitung ermöglichen könnte. Nun ist es einem Team gelungen, an der VEKMAG-Station an BESSY II eine neue Technik zu entwickeln, um diese Wirbel präzise zu vermessen und dabei die drei unterschiedlichen Eigenschwingungen zu beobachten.

Cu2OSeO3 ist ein Material mit besonderen magnetischen Eigenschaften. So bilden sich in einem bestimmten Temperaturbereich bei einem kleinen äußeren Magnetfeld so genannte Skyrmionen: magnetische Spinwirbel. Aktuell sind dafür moderat tiefe Temperaturen um die 60 Kelvin (-213 Grad Celsius) erforderlich, es scheint aber möglich zu sein, diesen Temperaturbereich auch in die Raumtemperatur zu verschieben. Das Spannende an Skyrmionen ist, dass sie sich sehr leicht bewegen und kontrollieren lassen und damit neue Möglichkeiten für eine energiesparende Datenverarbeitung bieten.

Drei Eigenschwingungen erwartet

Theoretische Arbeiten hatten vorausgesagt, dass es möglich sein sollte, mit einem elektrischen Hochfrequenzfeld Skyrmionen in der Probe gemeinsam und synchron anzuregen: so könnten sich die Skyrmionen entweder alle gemeinsam im oder gegen den Uhrzeigersinn drehen oder aber „atmen“, indem sie sich ausdehnen und wieder zusammenziehen. Nun ist es einem Team gelungen, in einer einkristallinen Probe von Cu2OSeO3 die Dynamik dieser Skyrmionen im Detail zu vermessen.

Nachweis an der VEKMAG-Station an BESSY II

An BESSY II gelang es ihnen, eine spinauflösende Methode mit einem äußeren Mikrowellenfeld zu kombinieren: „So konnten wir die Spins und ihre Ausrichtung präzise kartieren, und zwar für jede Sorte von Spins, die in der Probe vorhanden ist“, erläutert der HZB-Physiker Dr. Florin Radu, der gemeinsam mit Kooperationspartnern aus den Universitäten Regensburg, der Ruhr Universität Bochum sowie der Freien Universität Berlin die VEKMAG-Station aufgebaut hat. Aufbau und Fortentwicklung der VEKMAG-Station werden durch das BMBF und das HZB gefördert. 

Durch ferromagnetische Resonanzexperimente an einem so genannten Bragg-Peak zeigte die Forschergruppe damit erstmals experimentell, dass sich alle drei Eigenschwingungen in Cu2OSeO3 ausbilden: Sie beobachteten magnetische Wirbel in drei unterschiedlichen, synchronen Bewegungsmustern, die sich mit dem Uhrzeigersinn oder gegen den Uhrzeigersinn drehen oder sich „atmend“ ausdehnen und zusammenziehen.

Kontrolle durch Mikrowellen

Jedes Bewegungsmuster wird bei einer bestimmten Frequenz des Mikrowellenfeldes erreicht, die vom äußeren Magnetfeld sowie von intrinsischen Parametern der Probe abhängt. Mit Hilfe des Mikrowellenfeldes sind somit Übergänge von einer Eigenschwingung in eine andere möglich. "Das ist ein erster Schritt zur Kontrolle von Skyrmionen", sagt Radu.

Phys. Rev. Lett. (2019): Ferromagnetic Resonance with Magnetic Phase Selectivity by Means of Resonant Elastic X-Ray Scattering on a Chiral Magnet; S. Pöllath, A. Aqeel, A. Bauer, C. Luo, H. Ryll, F. Radu, C. Pfleiderer, G. Woltersdorf, and C. H. Back

DOI:  10.1103/PhysRevLett.123.167201

 

arö


Das könnte Sie auch interessieren

  • BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Science Highlight
    09.07.2024
    BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Feststoffbatterien können mehr Energie speichern und sind sicherer als Batterien mit flüssigen Elektrolyten. Allerdings halten sie nicht so lange und ihre Kapazität nimmt mit jedem Ladezyklus ab. Doch das muss nicht so bleiben: Forscherinnen und Forscher sind den Ursachen bereits auf der Spur. In der Fachzeitschrift ACS Energy Letters stellt ein Team des HZB und der Justus-Liebig-Universität Gießen eine neue Methode vor, um elektrochemische Reaktionen während des Betriebs einer Feststoffbatterie mit Photoelektronenspektroskopie an BESSY II genau zu verfolgen. Die Ergebnisse helfen, Batteriematerialien und -design zu verbessern.

  • HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Nachricht
    09.07.2024
    HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Auf der Suche nach dem perfekten Katalysator bekommt HZB-Forscher Robert Seidel nun Rückenwind – durch einen hochkarätigen ERC Consolidator Grant. In der Titelgeschichte stellen wir vor, warum die Röntgenquelle BESSY II für sein Vorhaben eine wichtige Rolle spielt.

  • Wertstoffe aus Abfall: Auf die richtigen Elektrolyte kommt es an
    Science Highlight
    01.07.2024
    Wertstoffe aus Abfall: Auf die richtigen Elektrolyte kommt es an
    Stellt man aus Biomasse Biodiesel her, fällt als Nebenprodukt Glycerin an. Bislang wird dieses Nebenprodukt jedoch wenig genutzt, obwohl es durch Oxidation in photoelektrochemischen Reaktoren (PEC) zu wertvolleren Chemikalien verarbeitet werden könnte. Der Grund dafür: geringe Effizienz und Selektivität. Nun hat ein Team um Dr. Marco Favaro vom Institut für Solare Brennstoffe am HZB den Einfluss der Elektrolyte auf die Effizienz der Glycerin-Oxidations-Reaktion in PEC-Reaktoren untersucht und Ergebnisse erhalten, die dabei helfen, effizientere und umweltfreundlichere Produktionsverfahren zu entwickeln.