Nanopartikel in Lithium-Schwefel-Akkus mit Neutronen aufgespürt

Diese am HZB selbstentwickelte Messzelle ermöglicht es, die Batteriezelle in "operando" zu analysieren.

Diese am HZB selbstentwickelte Messzelle ermöglicht es, die Batteriezelle in "operando" zu analysieren. © S. Risse/HZB

Ein HZB-Team hat erstmals mit Hilfe von Neutronenexperimenten präzise analysiert, wie und wo sich Nanopartikel aus Lithiumsulfid und Schwefel im Lauf der Ladezyklen an den Batterie-Elektroden abscheiden. Die Ergebnisse können dazu beitragen, die Lebensdauer von Lithium-Schwefel-Akkus zu erhöhen.

Lithium-Schwefel-Akkus gelten als vielversprechende Kandidaten für die nächste Generation von Energiespeichern. Sie besitzen eine theoretische gravimetrische Energiedichte, die fünfmal höher ist als die der derzeit besten Lithium-Ionen-Akkumulatoren. Und sie funktionieren sogar bei Minusgraden bis -50 °C. Außerdem ist Schwefel preiswert und umweltfreundlich. Allerdings sinkt bislang mit jedem Lade-Entladezyklus die Kapazität stark ab, sodass solche Batterien noch nicht langlebig sind.

Kapazitätsverlust durch Reaktionsprodukte

Der Kapazitätsverlust wird durch komplizierte Reaktionsprozesse an den Elektroden im Inneren der Batteriezelle verursacht. Daher ist es besonders wichtig, die Abscheidung und das Auflösen des Lade- (Schwefel) und Entladeproduktes (Lithiumsulfid) genau zu verstehen. Während sich Schwefel makroskopisch abscheidet und sich daher mit bildgebenden Verfahren oder Röntgenbeugung sehr gut während des Zyklierens untersuchen lässt, ist Lithiumsulfid aufgrund einer Partikelgröße im sub-10-nm-Bereich nur schwer zu detektieren.

Neutronen zeigen, wo sich die Nanopartikel ablagern

Diesen Einblick liefern nun erstmals Untersuchungen an der Neutronenquelle BER II am HZB. Dr. Sebastian Risse hat mithilfe einer selbst entwickelten Messzelle Lithium-Schwefel-Batterien während der Lade- und Entladezyklen (operando) mit Neutronen durchleuchtet und zeitgleich weitere Messungen (Impedanzspektroskopie) durchgeführt.

Dadurch konnte er mit seinem Team das Auflösen und Abscheiden von Lithiumsulfid während zehn Entlade/Ladezyklen sehr genau analysieren. Da Neutronen stark mit Deuterium (schwerer Wasserstoff) wechselwirken, verwendeten die Forscher in der Batteriezelle ein deuteriertes Elektrolyt, um die beiden festen Produkte Schwefel und Lithiumsulfid sichtbar zu machen.

Überraschendes Ergebnis

Das Fazit der Forscher: „Wir sehen, dass die Lithiumsulfid- oder Schwefelabscheidungen nicht im Inneren der mikroporösen Kohlenstoffelektroden stattfinden, sondern auf der äußeren Oberfläche der Kohlenstofffasern“, sagt Risse. Diese Ergebnisse geben wertvolle Hinweise für die Entwicklung besserer Batterieelektroden.

Die Studie ist publiziert in ACS Nano, (2019): Operando Analysis of a Lithium/Sulfur Battery by Small Angle Neutron Scattering. Sebastian Risse, Eneli Härk, Ben Kent and Matthias Ballauff

DOI: http://dx.doi.org/10.1021/acsnano.9b03453

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Zwei Humboldt-Fellows am HZB
    Nachricht
    09.12.2024
    Zwei Humboldt-Fellows am HZB
    Zwei junge Wissenschaftler sind zurzeit als Humboldt-Postdoktoranden am HZB tätig. Kazuki Morita bringt seine Expertise in Modellierung und Datenanalyse in die Solarenergieforschung im Team von Prof. Antonio Abate ein. Qingping Wu ist Experte für Batterieforschung und arbeitet mit Prof. Yan Lu zusammen an Lithium-Metall-Batterien mit hoher Energiedichte.

  • Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Science Highlight
    05.12.2024
    Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Für die Produktion von Wasserstoff mit Elektrolyse werden Iridiumbasierte Katalysatoren benötigt. Nun zeigt ein Team am HZB und an der Lichtquelle ALBA, dass die neu entwickelten P2X-Katalysatoren, die mit nur einem Viertel des Iridiums auskommen, ebenso effizient und langzeitstabil sind wie die besten kommerziellen Katalysatoren. Messungen an BESSY II haben nun ans Licht gebracht, wie die besondere chemische Umgebung im P2X-Kat während der Elektrolyse die Wasserspaltung befördert.
  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.