Tomographie-Weltrekord: Zuschauen, wie Metall aufgeschäumt wird

Der Messtisch rotiert extrem präzise und mehrere hundert Male pro Sekunde um seine Achse.

Der Messtisch rotiert extrem präzise und mehrere hundert Male pro Sekunde um seine Achse. © HZB

Mit einem am HZB entwickelten Rotationstisch hat ein internationales Forscher-Team an der Synchrotron Lichtquelle Schweiz, SLS, einen neuen Rekord erreicht: Mit 208 dreidimensionalen Röntgenaufnahmen (Tomographien) pro Sekunde konnten sie die dynamischen Prozesse beim Aufschäumen von flüssigem Aluminium dokumentieren. Im Fachjournal Nature Communications wird die Methode vorgestellt.

Der am HZB konstruierte Präzisions-Messtisch rotiert extrem präzise und mehrere hundert Male pro Sekunde um seine Achse. Das HZB-Team um Dr. Francisco García-Moreno kombinierte den Messtisch mit einer hochauflösenden Optik und erreichte damit in 2018 an der BESSY II-Beamline EDDI einen ersten Weltrekord mit gut 25 Tomographien pro Sekunde.

Nun hat das Team gemeinsam mit der Gruppe um Prof. Marco Stampanoni aus dem Paul-Scherrer-Institut, PSI, an der Synchrotron Lichtquelle Schweiz, SLS, einen neuen Weltrekord erzielt. Dafür bauten sie den Rotationstisch an der TOMCAT Strahllinie der SLS auf. Diese verfügt über eine Hochgeschwindigkeitskamera mit extrem hoher Datentransferrate, die eigens für solch schnelle Messungen entwickelt wurde. „Mehr als 200 Tomographien pro Sekunde sind nun möglich und das über Messzeiten von mehreren Minuten“, sagt Garcia-Moreno. Für diese neue bildgebende Methode wurde der Begriff Tomoskopie geprägt.

Tomoskopie: neues bildgebendes Verfahren

Dr. Christian Schlepütz vom PSI betont: „Bei jeder Tomoskopiemessung werden riesige Datenmengen erzeugt, die laufend mit einer sehr hohen Datenrate von acht Gigabyte pro Sekunde gespeichert werden müssen. Nur dadurch lassen sich die extrem schnellen Vorgänge im Material über längere Zeiträume beobachten“.

Im Anschluss an die Experimente müssen auf den Computerclustern am PSI tausende einzelner Tomographien aus den Messdaten errechnet werden, und die Bilder werden automatisch weiter verarbeitet, was quantitative Analysen ermöglicht. Um die mehrere Terabyte großen Datenmengen pro Experiment zu verarbeiten, hat Dr. Paul Kamm aus dem HZB einen eigenen Workflow programmiert.

Die Kooperationspartner nutzten die neue bildgebende Methode, um dynamische Prozesse beim Aufschäumen von flüssigem Aluminium im Detail und mit hoher Zeitauflösung zu beobachten. Denn auf diese Weise lassen sich Prozesse bei der Schaumbildung in metallischen Schmelzen untersuchen und verstehen. Dies ist wichtig, um im später ausgehärteten Schaum eine optimale Materialverteilung und gleichmäßige Porenbildung zu erreichen, so dass er in Leichtbauanwendungen einsetzbar ist.

Metallschäume für den Leichtbau

Metallische Schäume sind eine wichtige Materialklasse für den Leichtbau, und sie sind ein dankbares Untersuchungsobjekt für die nun entwickelte Tomoskopie, da flüssiges Metall weitgehend unempfindlich gegenüber Strahlenschäden ist und die erreichten Aufnahmegeschwindigkeiten sehr gut zu den Phänomenen beim Aufschäumen passen.

Die Computertomoskopie könnte auch interessante Einblicke in viele weitere Prozesse ermöglichen: zum Beispiel ließe sich damit untersuchen, wie sich Materialien beim Laserschweißen verändern oder was passiert, wenn sich Batterien etwa durch Kurzschluss überhitzen (thermal runaway).

Die Forscher an HZB und PSI arbeiten nun daran, die Geschwindigkeit weiter zu erhöhen, um die Zeitauflösung der Messungen weiter zu steigern.

Nature communications (2019): Using X-ray tomoscopy to explore the dynamics of foaming metal; Francisco García-Moreno, Paul Hans Kamm, Tillmann Robert Neu, Felix Bülk, Rajmund Mokso, Christian Matthias Schlepütz, Marco Stampanoni, John Banhart

HZB, TU Berlin, MAX IV, PSI, ETH Zürich

DOI: 10.1038/s41467-019-11521-1

arö


Das könnte Sie auch interessieren

  • Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Science Highlight
    17.07.2024
    Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Die besonderen Eigenschaften von magnetischen Materialien aus der Gruppe der Seltenen Erden gehen auf Elektronen in der 4f-Schale zurück. Bislang galten die magnetischen Eigenschaften der 4f-Elektronen als kaum kontrollierbar. Nun hat ein Team von HZB, der Freien Universität Berlin und weiteren Einrichtungen erstmals gezeigt, dass durch Laserpulse 4f-Elektronen beeinflusst – und damit deren magnetische Eigenschaften verändert werden können. Die Entdeckung, die durch Experimente am EuXFEL und FLASH gelang, weist einen neuen Weg zu Datenspeichern mit Seltenen Erden.
  • BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Science Highlight
    09.07.2024
    BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Feststoffbatterien können mehr Energie speichern und sind sicherer als Batterien mit flüssigen Elektrolyten. Allerdings halten sie nicht so lange und ihre Kapazität nimmt mit jedem Ladezyklus ab. Doch das muss nicht so bleiben: Forscherinnen und Forscher sind den Ursachen bereits auf der Spur. In der Fachzeitschrift ACS Energy Letters stellt ein Team des HZB und der Justus-Liebig-Universität Gießen eine neue Methode vor, um elektrochemische Reaktionen während des Betriebs einer Feststoffbatterie mit Photoelektronenspektroskopie an BESSY II genau zu verfolgen. Die Ergebnisse helfen, Batteriematerialien und -design zu verbessern.

  • HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Nachricht
    09.07.2024
    HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Auf der Suche nach dem perfekten Katalysator bekommt HZB-Forscher Robert Seidel nun Rückenwind – durch einen hochkarätigen ERC Consolidator Grant. In der Titelgeschichte stellen wir vor, warum die Röntgenquelle BESSY II für sein Vorhaben eine wichtige Rolle spielt.