Traditionsreiche HZB-Neutronenschule wird an ANSTO in Australien weitergeführt

Die Neutronenschule am ANSTO in Kooperation mit HZB-Expertinnen konnte den Teilnehmenden viel Wissen vermitteln.

Die Neutronenschule am ANSTO in Kooperation mit HZB-Expertinnen konnte den Teilnehmenden viel Wissen vermitteln. © ANSTO

Diesen Sommer haben Forscherinnen und Forscher an der australischen Neutronenquelle ACNS bei Australia’s Nuclear Science and Technology Organisation ANSTO eine gemeinsame Neutronenschule organisiert. Die HZB-ANSTO Neutronenschule soll künftig alle zwei Jahre stattfinden. 

Die erste gemeinsame HZB-ANSTO Neutronenschule fand vom 23. - 28.  Juni 2019 am ANSTO statt. Aus dem HZB hatten Prof. Dr. Bella Lake und Prof. Dr. Susan Schorr mehrere Vorlesungen übernommen. Das Interesse an der Neutronenschule war sehr groß, aus 60 Bewerbungen wurden 24 Teilnehmende ausgesucht. Neben Vorlesungen gab es insbesondere auch praktische Trainings an drei Instrumenten der Neutronenquelle ACNS bei ANSTO.

„Wir haben uns bei der Konzeption von der umfassenden Ausbildung der Neutronenschule in Berlin, am HZB, inspirieren lassen“, sagte Dr. Helen Maynard-Casely, eine der Organisatorinnen bei ANSTO.  Künftig werde ein zweijähriger Rhythmus angedacht, möglicherweise auch mit unterschiedlichen Schwerpunkten, zum Beispiel für Ingenieure.

Kurz vor Beginn der Neutronenschule konnte das Instrument SPATZ an der ACNS den Betrieb aufnehmen. SPATZ stammt ursprünglich aus der Berliner Neutronenquelle BER II und trug am HZB den Namen BioRef. Das Instrument ermöglicht einzigartige Einblicke in Energiematerialien, weiche Materie und biomedizinische Fragestellungen. Es wurde nach Australien transferiert, um auch nach Abschaltung des BER II der Forschung zur Verfügung zu stehen.

In einem kurzen Video berichtet ANSTO über den Transfer und den Aufbau von SPATZ.

arö


Das könnte Sie auch interessieren

  • Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Science Highlight
    17.07.2024
    Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Die besonderen Eigenschaften von magnetischen Materialien aus der Gruppe der Seltenen Erden gehen auf Elektronen in der 4f-Schale zurück. Bislang galten die magnetischen Eigenschaften der 4f-Elektronen als kaum kontrollierbar. Nun hat ein Team von HZB, der Freien Universität Berlin und weiteren Einrichtungen erstmals gezeigt, dass durch Laserpulse 4f-Elektronen beeinflusst – und damit deren magnetische Eigenschaften verändert werden können. Die Entdeckung, die durch Experimente am EuXFEL und FLASH gelang, weist einen neuen Weg zu Datenspeichern mit Seltenen Erden.
  • BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Science Highlight
    09.07.2024
    BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Feststoffbatterien können mehr Energie speichern und sind sicherer als Batterien mit flüssigen Elektrolyten. Allerdings halten sie nicht so lange und ihre Kapazität nimmt mit jedem Ladezyklus ab. Doch das muss nicht so bleiben: Forscherinnen und Forscher sind den Ursachen bereits auf der Spur. In der Fachzeitschrift ACS Energy Letters stellt ein Team des HZB und der Justus-Liebig-Universität Gießen eine neue Methode vor, um elektrochemische Reaktionen während des Betriebs einer Feststoffbatterie mit Photoelektronenspektroskopie an BESSY II genau zu verfolgen. Die Ergebnisse helfen, Batteriematerialien und -design zu verbessern.

  • Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Nachricht
    19.06.2024
    Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Am 17. Juni 2024 ist in Jena das Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) im Beisein von Wolfgang Tiefensee, Minister für Wirtschaft, Wissenschaft und Digitale Gesellschaft des Freistaates Thüringen, feierlich eröffnet worden. Das Institut wurde vom Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) in Kooperation mit der Friedrich-Schiller-Universität Jena gegründet: Es widmet sich der Entwicklung nachhaltiger Polymermaterialien für Energietechnologien. Diese sollen eine Schlüsselrolle bei der Energiewende spielen und Deutschlands Ziel unterstützen, bis 2045 klimaneutral zu werden.