Älteste vollständig erhaltene Lilie entdeckt

© Museum für Naturkunde Berlin

Die Farbcodierung im CT-Scan macht Details sichtbar: Hauptachse (türkis), Tragblätter (dunkelgrün), Fruchtblätter (hellgrün), Blütenblätter (orange).

Die Farbcodierung im CT-Scan macht Details sichtbar: Hauptachse (türkis), Tragblätter (dunkelgrün), Fruchtblätter (hellgrün), Blütenblätter (orange).

Bereits vor 115 Millionen Jahren waren tropische Blütenpflanzen offenbar sehr vielfältig und zeigten alle typischen Merkmale. Zu diesem Schluss kommt ein internationales Forscherteam unter Leitung von Clément Coiffard, Museum für Naturkunde Berlin. Das Team berichtet in der renommierten Fachzeitschrift Nature Plants über die älteste vollständig erhaltene Lilie, Cratolirion bognerianum, die an einem Fundort im heutigen Brasilien entdeckt wurde. Mit Hilfe von 3D-Computertomographien am Helmholtz-Zentrum Berlin ließen sich auch Details auf der Rückseite der fossilisierten Pflanze analysieren. Die Ergebnisse werfen neue Fragen über die Rolle der Tropen bei der Entwicklung damaliger und heutiger Ökosysteme auf.

Der Botaniker Dr. Clément Coiffard vom Museum für Naturkunde Berlin entdeckte in der Forschungssammlung die älteste, vollständig erhaltene Lilie: Cratolirion bognerianum wurde in kalkigen Sedimenten eines einstigen Süßwassersees in Crato im Nordosten Brasiliens gefunden. Mit einem Alter von ca. 115 Millionen Jahren gehört Cratolirion zu den ältesten bekannten einkeimblättrigen Pflanzen. Dazu gehören zum Beispiel Orchideen, Süßgräser, Lilien und Maiglöckchen.

Große, gut erhaltene Pflanze mit vielen Details

Cratolirion ist außerordentlich gut und vollständig erhalten, mit allen Wurzeln, der Blüte und selbst die einzelnen Zellen sind fossil überliefert. Das Exemplar ist mit fast 40 Zentimeter Länge nicht nur ausgesprochen riesig, sondern zeigt auch fast alle typischen Merkmale einkeimblättriger Pflanzen, u.a. parallelnervige, schmale Blätter mit Blattscheide, ein faseriges Wurzelsystem und dreizählige Blüten (zweimal drei gleichartig aussehende Blütenhüllblätter und Kronblätter, zweimal drei Staubblätter und drei Fruchtblätter). Zusätzlich zeigt Cratolirion mit einer Dolde auch einen einzigartigen Blütenstand als besonderes Merkmal.

3D-Analyse am HZB

Es war jedoch nicht trivial, das fossilisierte Objekt zu untersuchen, denn es bestand aus Eisenoxiden, die mit dem Stein verbunden waren. Um hier Einzelheiten zu erkennen, arbeitete Coiffard mit dem HZB-Physiker Dr. Nikolay Kardjilov zusammen, der Experte für 3D-Analysen mit Röntgenlicht und Neutronen ist. Am HZB hat er auch eine 3D Computertomographie aufgebaut und die Datenanalyse so verfeinert, dass beim Untersuchen von großen, flachen Objekten kaum störende Artefakte entstehen. Dadurch war es möglich, auch die im Stein verborgenen Details des Blütenstands zu analysieren. Eine Farbcodierung im CT-Scan macht diese Details sichtbar: Die Hauptachse ist in türkis gekennzeichnet, in dunkelgrün die Tragblätter, in hellgrün die Fruchtblätter und in orange sind noch Reste der eigentlichen Blütenblätter zu erkennen.  

Ungewöhnliche Vielfalt

Aus den gleichen Sedimenten des einstigen Süßwassersees in Crato wurden bereits viele frühe zweikeimblättrige Blütenpflanzen beschrieben. Dazu gehören Seerosen, Aronstäbe, dürreresistente Magnolien sowie Verwandte von Pfeffer und Lorbeer. Im Gegensatz zu anderen Blütenpflanzen gleichen Alters aus den USA, Portugal, China und Argentinien, sind die Blütenpflanzen der Crato-Flora ungewöhnlich divers. Dies könnte damit zusammenhängen, dass sich der Crato-See in den niedrigen Breitengraden befand, alle anderen erhaltenen Fossilien früher Blütenpflanzen jedoch aus den mittleren Breitengraden stammen.

Anhand dieser neu beschriebenen Pflanze Cratolirion bognerianum und der oben erwähnten Arten der Crato-Flora lässt sich ableiten, dass die tropischen Blütenpflanzen bereits sehr vielfältig waren. „Wahrscheinlich sind Blütenpflanzen in den Tropen entstanden, aber bis heute sind erst ganz wenige Fossilien beschrieben worden“ erklärt Coiffard. Damit ergeben sich aus dieser Studie neue Erkenntnisse über die Rolle der Tropen bei der Entwicklung früher Blütenpflanzen und ihrem Aufstieg zur weltweiten Vorherrschaft.

 

Publiziert in Nature Plants (2019): Fossil evidence of core monocots in the Early Cretaceous; Clément Coiffard, Nikolay Kardjilov, Ingo Manke and Mary E. C. Bernardes-de-Oliveira

Doi: 10.1038/s41477-019-0468-y

 

MfN/HZB

  • Link kopieren

Das könnte Sie auch interessieren

  • Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Science Highlight
    28.03.2025
    Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Im Jahr 2023 erzeugten Photovoltaikanlagen weltweit mehr als 5% der elektrischen Energie und die installierte Leistung verdoppelt sich alle zwei bis drei Jahre. Optische Technologien können die Effizienz von Solarmodulen weiter steigern und neue Einsatzbereiche erschließen, etwa in Form von ästhetisch ansprechenden, farbigen Solarmodulen für Fassaden. Nun geben 27 Fachleute einen umfassenden Überblick über den Stand der Forschung und eine Einschätzung, welche Innovationen besonders zielführend sind. Der Bericht, der auch für Entscheidungsträger*innen in der Forschungsförderung interessant ist, wurde von Prof. Christiane Becker und Dr. Klaus Jäger aus dem HZB koordiniert.
  • Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Science Highlight
    27.03.2025
    Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.
  • BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Science Highlight
    25.03.2025
    BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Eine blütenförmige Struktur aus einer Nickel-Eisen-Legierung, die nur wenige Mikrometer misst, kann Magnetfelder lokal verstärken. Der Effekt lässt sich durch die Geometrie und Anzahl der „Blütenblätter“ steuern. Das magnetische Metamaterial wurde von der Gruppe um Dr. Anna Palau am Institut de Ciencia de Materials de Barcelona (ICMAB) mit Partnern aus dem CHIST-ERA MetaMagIC-Projekts entwickelt und nun an BESSY II in Zusammenarbeit mit Dr. Sergio Valencia untersucht. Die Mikroblüten ermöglichen vielfältige Anwendungen: Sie können die Empfindlichkeit magnetischer Sensoren erhöhen, die Energie für die Erzeugung lokaler Magnetfelder reduzieren, und am PEEM-Messplatz an BESSY II die Messung von Proben unter deutlich höheren Magnetfeldern ermöglichen.