Ladungstransfer innerhalb von Übergangsmetall-Farbstoffen analysiert

Ein Röntgenpuls untersucht die Delokalisierung von Eisen 3d-Elektronen auf anliegende Liganden.

Ein Röntgenpuls untersucht die Delokalisierung von Eisen 3d-Elektronen auf anliegende Liganden. © M. Künsting/HZB

In farbstoffbasierten Solarzellen sorgen Übergangsmetall-Komplexe dafür, dass Licht in elektrische Energie umgewandelt wird. Bisher ging man davon aus, dass innerhalb des Moleküls eine räumliche Ladungstrennung stattfindet. Dass dies eine zu simple Beschreibung des Prozesses ist, zeigt eine Analyse an BESSY II. Erstmals hat dort ein Team die fundamentalen elektronischen Prozesse rund um das Metallatom und seine Liganden untersucht. Die Arbeit ist in der Fachzeitschrift „Angewandte Chemie, International Edition“ erschienen und stellt das Titelbild.

Organische Solarzellen wie die Grätzel-Zelle bestehen aus Farbstoffen, die auf Übergangsmetall-Komplex-Verbindungen basieren. Sonnenlicht regt die äußeren Elektronen des Komplexes so an, dass sie von Orbitalen am Metallzentrum in Orbitale angrenzender Verbindungen transportiert werden. Bisher ging man davon aus, dass bei diesem Prozess Ladungsträger räumlich getrennt werden, welche dann abgezogen werden, sodass ein elektrischer Strom fließen kann. Dass dies nicht so ist, hat nun ein Team um Alexander Föhlisch am HZB aufklären können.

Mithilfe der kurzen Röntgenpulse von BESSY II im Low-Alpha-Betrieb konnten sie Schritt für Schritt verfolgen, welche Prozesse die Anregung durch Licht (Laserpuls) in einem Eisenkomplex auslöst. „Wir können direkt beobachten, wie der Laserpuls die 3d-Orbitale am Metall entvölkert“, erklärt Raphael Jay, Doktorand und Erstautor der Studie. Mit Hilfe von theoretischen Berechnungen konnten sie die Messdaten aus der zeitaufgelösten Röntgenabsorptions-Spektroskopie sehr genau interpretieren. Dabei ergibt sich folgendes Bild: Der Laserpuls sorgt zunächst tatsächlich dafür, dass Elektronen vom 3d-Orbital des Eisenatoms auf die angrenzenden Liganden delokalisiert werden. Diese Liganden schieben allerdings ihrerseits sofort Ladung zurück in Richtung des Metall-Atoms, wodurch der Verlust elektronischer Ladung am Metall und die damit ursprünglich verbundene Ladungstrennung sofort kompensiert wird.

Diese Erkenntnisse könnten dazu beitragen, neue Materialien für Farbstoffsolarzellen zu entwickeln. Denn bisher werden standardmäßig Ruthenium-Komplexe in organischen Solarzellen verwendet. Ruthenium ist jedoch ein seltenes Element und entsprechend teuer. Eisen-Komplexe wären deutlich billiger, weisen aber hohe Rekombinationsraten auf. Weitere Untersuchungen werden zeigen, worauf es bei Übergangsmetall-Komplexen ankommt, damit Licht effizient in elektrische Energie umgewandelt werden kann.

Covalency-driven preservation of local charge densities in a metal-to-ligand charge-transfer excited iron photosensitizer

Raphael M. Jay, Sebastian Eckert, Vinícius Vaz da Cruz, Mattis Fondell, Rolf Mitzner, and Alexander Föhlisch

Angewandte Chemie International Edition

Doi: 10.1002/anie.201904761

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Science Highlight
    04.11.2024
    BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.
  • Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Science Highlight
    28.10.2024
    Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.