Organische Elektronik: Neuer Halbleiter aus der Familie der Kohlenstoffnitride

Die Illustration deutet im Hintergrund das Laserexperiment an und die Struktur des TGCN.

Die Illustration deutet im Hintergrund das Laserexperiment an und die Struktur des TGCN. © C.Merschjann/HZB

Teams der Humboldt-Universität und am Helmholtz-Zentrum Berlin haben ein neues Material aus der Familie der Kohlenstoffnitride untersucht. Das Triazin-basierte graphitische Kohlenstoffnitrid (TGCN) ist ein Halbleiter, der sich gut für Anwendungen in der Optoelektronik eignen sollte. Die Struktur ist zweidimensional und erinnert an Graphen. Anders als beim Graphen ist die Leitfähigkeit jedoch senkrecht zu den Ebenen 65mal höher als in den Ebenen selbst.

Manche organische Materialien könnten ähnlich wie Siliziumhalbleiter in der Optoelektronik eingesetzt werden. Ob als Solarzellen, Leuchtdioden oder auch als Transistoren – wichtig ist dabei die so genannte Bandlücke, also der Energie-Unterschied zwischen Elektronen im Valenzband (gebundener Zustand) und dem Leitungsband (beweglicher Zustand). Durch Licht oder eine elektrische Spannung lassen sich Ladungsträger vom Valenzband ins Leitungsband heben – so funktionieren im Prinzip alle elektronischen Bauelemente. Ideal sind Bandlücken zwischen 1-2 Elektronenvolt.

TGCN ist ein guter Kandidat für die Optoelektronik

Ein Team um den Chemiker Dr. Michael J. Bojdys an der Humboldt-Universität Berlin hat kürzlich ein neues organisches Halbleitermaterial aus der Familie der Kohlenstoffnitride synthetisiert. Das Triazin-basierte graphitische Kohlenstoffnitrid oder TGCN besteht nur aus Kohlenstoff- und Stickstoff-Atomen und lässt sich als brauner Film auf einem Quartzsubstrat aufwachsen. Die C- und N-Atome bilden miteinander sechseckige Waben, ähnlich wie im Graphen, das aus reinem Kohlenstoff besteht. Wie bei Graphen ist auch beim TGCN die kristalline Struktur zweidimensional. Bei Graphen ist die Leitfähigkeit in der Ebene jedoch exzellent, senkrecht dazu sehr schlecht. Bei TGCN ist es genau umgekehrt: die Leitfähigkeit senkrecht zur Ebene ist rund 65mal größer ist als in der Ebene selbst. Mit einer Bandlücke von 1,7 Elektronenvolt ist TGCN ein guter Kandidat für Anwendungen in der Optoelektronik.

Laserexperiment zeigt Transportprozesse im Detail

Der HZB-Physiker Dr. Christoph Merschjann hat daraufhin im Laserlabor JULiq, einem Joint Lab zwischen HZB und Freie Universität Berlin, die Transporteigenschaften in Proben aus TGCN mit zeitaufgelösten Absorptionsmessungen im Femto- bis Nanosekundenbereich untersucht. Solche Laserexperimente ermöglichen es, die makroskopische Leitfähigkeit mit mikroskopischen Transportmodellen zu verknüpfen. Aus den Messdaten konnte er ableiten, wie die Ladungsträger durch das Material diffundieren. „Sie verlassen die sechseckigen Waben aus Triazin-Einheiten nicht horizontal, sondern bewegen sich schräg zur nächsten Triazin-Einheit in der Nachbarebene. Sie bewegen sich entlang röhrenartiger Kanäle durch die Kristallstruktur.“ Dieser Mechanismus könnte erklären, dass die Leitfähigkeit senkrecht zu den Ebenen deutlich höher ist, als in den Ebenen. Allerdings reicht er vermutlich nicht aus, um den tatsächlich gemessenen Faktor von 65 zu erklären. „Wir haben die Transporteigenschaften in diesem Material noch nicht vollständig verstanden und wollen diese weiter untersuchen“, kündigt Merschjann an. Dazu wird der verwendete Aufbau im JULiq-Nachfolgelabor, dem ULLAS-Lab am HZB in Wannsee, für neue Experimente einsatzfähig gemacht.

 „TGCN ist daher bislang der beste Kandidat, um gängige anorganische Halbleiter wie Silizium mit ihren teilweise kritischen “Dotanden” aus seltenen Elementen zu ersetzen“, sagt Michael Bojdys. „Unser Herstellungsverfahren, das wir in meiner Gruppe an der Humboldt-Universität entwickelt haben, führt zu flachen Schichten von halbleitendem TGCN auf isolierendem Quartzglas. Das ermöglicht Upscaling und einfache Device-Produktion.“

Zur Publikation:

Angewandte Chemie: "Directional Charge Transport in Layered Two‐Dimensional Triazine‐Based Graphitic Carbon Nitride" Yu Noda, Christoph Merschjann, Ján Tarábek, Patrick Amsalem, Norbert Koch, Michael J. Bojdys

DOI: 10.1002/anie.201902314

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Science Highlight
    04.11.2024
    BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.
  • Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Science Highlight
    28.10.2024
    Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.