Entwicklung eines miniaturisierten EPR-Spektrometers

© Benedikt Schlecker

Das Projekt "EPR on a Chip" startete am 3. Juni 2019 mit einem Auftakttreffen am HZB.

Das Projekt "EPR on a Chip" startete am 3. Juni 2019 mit einem Auftakttreffen am HZB. © HZB

Mehrere Forschungseinrichtungen entwickeln mit dem Industriepartner Bruker eine miniaturisierte EPR-Messvorrichtung, um Halbleitermaterialien, Solarzellen, Katalysatoren und Elektroden für Brennstoffzellen und Batterien zu untersuchen. Das „Lab on a Chip“ wird einen Technologiesprung in der Elektronenspinresonanz (EPR auf Englisch) ermöglichen. Das Bundesministerium für Bildung und Forschung (BMBF) fördert das Projekt „EPR-on-a-Chip“ mit 6,7 Millionen Euro. Am 3. Juni 2019 fand das Auftakttreffen am Helmholtz-Zentrum Berlin statt.

Die Elektronenspinresonanz bzw. elektronenparamagnetische Resonanz (EPR) liefert über die Anregung von Elektronenspins im Material detaillierte Information über dessen innere Struktur, bis hinunter auf die atomare Ebene. EPR-Spektroskopie ist ein wichtiges Instrument in der Biophysik, Chemie und medizinischen Diagnostik, wird mittlerweile aber auch in der Forschung an Energiematerialien wie Katalysatoren, Batterieelektroden und Solarzellenkomponenten eingesetzt.

Allerdings sind EPR-Spektrometer üblicherweise große und teure Geräte, die nur in besonders gut ausgestatteten Forschungslaboren zu finden sind. Zudem ist es mit konventionellen EPR-Geräten sehr schwierig, Untersuchungen unter realen Prozessbedingungen (operando-Messung) durchzuführen.

Doch es geht tatsächlich auch anders: Eine erste Demoversion eines miniaturisierten EPR-Spektrometers wurde bereits 2017 vorgestellt. Im Rahmen des BMBF-Projekts „EPRoC“ soll nun unter der Leitung von Prof. Dr. Klaus Lips und in enger Zusammenarbeit mit der Universität Stuttgart, dem Max-Planck-Institut für Chemische Energiekonversion, dem Karlsruher Institut für Technologie und der Firma Bruker eine Chip-basierte elektronenparamagnetische Resonanzspektroskopie (EPRoC) entwickelt werden, die diese systembedingten Nachteile für operando-Untersuchungen nicht mehr hat.

EPR-Chip kann sogar im Inneren der Probe platziert werden

Das EPR-Spektrometer wird dabei auf Chip-Größe miniaturisiert, so dass es sogar ins Innere der Probe eingeführt werden kann. Ziel ist es, mit Hilfe der EPRoC direkt Wachstumsprozesse von Dünnschichten für die Photovoltaik zu analysieren sowie katalytische Vorgänge während der Herstellung von solarem Wasserstoff zu untersuchen und zu verbessern. Dadurch ließe sich aufklären, wie die Strukturbildung auf der Nanoskala mit der Funktionalität der Prozesse und Materialien zusammenhängt.

Diese Technologie könnte auch andere analytische Verfahren verbessern

Während der dreijährigen Laufzeit des Projekts wollen die Partner das Potenzial der Technologie erschließen, indem sie die Effizienz der Prozesse und Bauelemente weiter verbessern und die Kosten senken. Zusätzlich wollen sie die EPRoC-Technik nutzen, um die Empfindlichkeit der Kernspinspektrometer (NMR) deutlich zu verbessern. Dies könnte sich langfristig auch auf die in der Medizin eingesetzte Magnetresonanztomographie auswirken.

Die Erkenntnisse sollen dafür sorgen, dass die EPRoC-Technologie innerhalb der nächsten zehn Jahre weiter entwickelt werden kann. Die Miniaturisierung der EPR wird neue Anwendungsgebiete erschließen und kann zu rascheren Fortschritten in der Energiematerialforschung, Sensorik, Medizin, Umwelttechnik, sowie der Lebensmittel- und analytischen Chemie führen.

Partner:

• Helmholtz-Zentrum Berlin, Institut für Nanospektroskopie (HZB), Koordination Prof. Dr. Klaus Lips

• Universität Stuttgart

• Karlsruher Institut für Technologie, Institut für Mikrostrukturtechnologie (KIT)

• Max-Planck-Institut für Chemische Energiekonversion (MPICEC)

• Bruker Biospin GmbH 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Science Highlight
    04.11.2024
    BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.
  • Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Science Highlight
    28.10.2024
    Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.