Entwicklung eines miniaturisierten EPR-Spektrometers

© Benedikt Schlecker

Das Projekt "EPR on a Chip" startete am 3. Juni 2019 mit einem Auftakttreffen am HZB.

Das Projekt "EPR on a Chip" startete am 3. Juni 2019 mit einem Auftakttreffen am HZB. © HZB

Mehrere Forschungseinrichtungen entwickeln mit dem Industriepartner Bruker eine miniaturisierte EPR-Messvorrichtung, um Halbleitermaterialien, Solarzellen, Katalysatoren und Elektroden für Brennstoffzellen und Batterien zu untersuchen. Das „Lab on a Chip“ wird einen Technologiesprung in der Elektronenspinresonanz (EPR auf Englisch) ermöglichen. Das Bundesministerium für Bildung und Forschung (BMBF) fördert das Projekt „EPR-on-a-Chip“ mit 6,7 Millionen Euro. Am 3. Juni 2019 fand das Auftakttreffen am Helmholtz-Zentrum Berlin statt.

Die Elektronenspinresonanz bzw. elektronenparamagnetische Resonanz (EPR) liefert über die Anregung von Elektronenspins im Material detaillierte Information über dessen innere Struktur, bis hinunter auf die atomare Ebene. EPR-Spektroskopie ist ein wichtiges Instrument in der Biophysik, Chemie und medizinischen Diagnostik, wird mittlerweile aber auch in der Forschung an Energiematerialien wie Katalysatoren, Batterieelektroden und Solarzellenkomponenten eingesetzt.

Allerdings sind EPR-Spektrometer üblicherweise große und teure Geräte, die nur in besonders gut ausgestatteten Forschungslaboren zu finden sind. Zudem ist es mit konventionellen EPR-Geräten sehr schwierig, Untersuchungen unter realen Prozessbedingungen (operando-Messung) durchzuführen.

Doch es geht tatsächlich auch anders: Eine erste Demoversion eines miniaturisierten EPR-Spektrometers wurde bereits 2017 vorgestellt. Im Rahmen des BMBF-Projekts „EPRoC“ soll nun unter der Leitung von Prof. Dr. Klaus Lips und in enger Zusammenarbeit mit der Universität Stuttgart, dem Max-Planck-Institut für Chemische Energiekonversion, dem Karlsruher Institut für Technologie und der Firma Bruker eine Chip-basierte elektronenparamagnetische Resonanzspektroskopie (EPRoC) entwickelt werden, die diese systembedingten Nachteile für operando-Untersuchungen nicht mehr hat.

EPR-Chip kann sogar im Inneren der Probe platziert werden

Das EPR-Spektrometer wird dabei auf Chip-Größe miniaturisiert, so dass es sogar ins Innere der Probe eingeführt werden kann. Ziel ist es, mit Hilfe der EPRoC direkt Wachstumsprozesse von Dünnschichten für die Photovoltaik zu analysieren sowie katalytische Vorgänge während der Herstellung von solarem Wasserstoff zu untersuchen und zu verbessern. Dadurch ließe sich aufklären, wie die Strukturbildung auf der Nanoskala mit der Funktionalität der Prozesse und Materialien zusammenhängt.

Diese Technologie könnte auch andere analytische Verfahren verbessern

Während der dreijährigen Laufzeit des Projekts wollen die Partner das Potenzial der Technologie erschließen, indem sie die Effizienz der Prozesse und Bauelemente weiter verbessern und die Kosten senken. Zusätzlich wollen sie die EPRoC-Technik nutzen, um die Empfindlichkeit der Kernspinspektrometer (NMR) deutlich zu verbessern. Dies könnte sich langfristig auch auf die in der Medizin eingesetzte Magnetresonanztomographie auswirken.

Die Erkenntnisse sollen dafür sorgen, dass die EPRoC-Technologie innerhalb der nächsten zehn Jahre weiter entwickelt werden kann. Die Miniaturisierung der EPR wird neue Anwendungsgebiete erschließen und kann zu rascheren Fortschritten in der Energiematerialforschung, Sensorik, Medizin, Umwelttechnik, sowie der Lebensmittel- und analytischen Chemie führen.

Partner:

• Helmholtz-Zentrum Berlin, Institut für Nanospektroskopie (HZB), Koordination Prof. Dr. Klaus Lips

• Universität Stuttgart

• Karlsruher Institut für Technologie, Institut für Mikrostrukturtechnologie (KIT)

• Max-Planck-Institut für Chemische Energiekonversion (MPICEC)

• Bruker Biospin GmbH 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Susanne Nies in EU-Beratergruppe zu Green Deal berufen
    Nachricht
    12.11.2025
    Susanne Nies in EU-Beratergruppe zu Green Deal berufen
    Dr. Susanne Nies leitet am HZB das Projekt Green Deal Ukraina, das den Aufbau eines nachhaltigen Energiesystems in der Ukraine unterstützt. Die Energieexpertin wurde nun auch in die wissenschaftliche Beratergruppe der Europäischen Kommission berufen, um im Zusammenhang mit der Netto-Null-Zielsetzung (DG GROW) regulatorische Belastungen aufzuzeigen und dazu zu beraten.
  • Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    Interview
    12.11.2025
    Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    In diesem Sommer war es in allen Medien. Angetrieben durch die Klimakrise haben nun auch die Ozeane einen kritischen Punkt überschritten, sie versauern immer mehr. Meeresschnecken zeigen bereits erste Schäden, aber die zunehmende Versauerung könnte auch die kalkhaltigen Skelettstrukturen von Korallen beeinträchtigen. Dabei leiden Korallen außerdem unter marinen Hitzewellen und Verschmutzung, die weltweit zur Korallenbleiche und zum Absterben ganzer Riffe führen. Wie genau wirkt sich die Versauerung auf die Skelettbildung aus?

    Die Meeresbiologin Prof. Dr. Tali Mass von der Universität Haifa, Israel, ist Expertin für Steinkorallen. Zusammen mit Prof. Dr. Paul Zaslansky, Experte für Röntgenbildgebung an der Charité Berlin, untersuchte sie an BESSY II die Skelettbildung bei Babykorallen, die unter verschiedenen pH-Bedingungen aufgezogen wurden. Antonia Rötger befragte die beiden Experten online zu ihrer aktuellen Studie und der Zukunft der Korallenriffe. 

  • Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Science Highlight
    07.11.2025
    Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Perowskit-Solarzellen sind kostengünstig in der Herstellung und liefern viel Leistung pro Fläche. Allerdings sind sie bisher noch nicht stabil genug für den Langzeit-Einsatz. Nun hat ein internationales Team unter der Leitung von Prof. Dr. Antonio Abate durch eine neuartige Beschichtung der Grenzfläche zwischen Perowskitschicht und dem Top-Kontakt die Stabilität drastisch erhöht. Dabei stieg der Wirkungsgrad auf knapp 27 Prozent, was dem aktuellen state-of-the-art entspricht. Dieser hohe Wirkungsgrad nahm auch nach 1.200 Stunden im Dauerbetrieb nicht ab. An der Studie waren Forschungsteams aus China, Italien, der Schweiz und Deutschland beteiligt. Sie wurde in Nature Photonics veröffentlicht.