Laserinduzierte Spindynamik in Ferrimagneten: Wohin geht der Drehimpuls?

Experimente an der Femtoslicing-Anlage von BESSY II zeigten den ultraschnellen Drehimpulsfluss von Gd- und Fe-Spins zum Gitter während der Entmagnetisierung der GdFe-Legierung.

Experimente an der Femtoslicing-Anlage von BESSY II zeigten den ultraschnellen Drehimpulsfluss von Gd- und Fe-Spins zum Gitter während der Entmagnetisierung der GdFe-Legierung. © R. Abrudan/HZB

Durch intensive Laserpulse kann die Magnetisierung eines Materials sehr schnell manipuliert werden. Magnetisierung wiederum ist fundamental mit dem Drehimpuls der Elektronen im Material verbunden. Ein Forscherteam des Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) konnte nun an BESSY II den Drehimpulstransfer in einer ferrimagnetischen Eisen-Gadolinium-Legierung im Detail verfolgen. Dabei gelang es ihnen, am Femtoslicing-Experiment bei BESSY II die ultraschnelle optische Entmagnetisierung zu vermessen und deren grundlegende Prozesse und Geschwindigkeitsgrenzen zu verstehen. Die Forschungsergebnisse wurden in der Zeitschrift „Physical Review Letters“ veröffentlicht.

Die Belichtung mit einem ultrakurzen Laserpuls erlaubt es, ein Material sehr schnell zu entmagnetisieren - für die prototypischen Ferromagnete Eisen, Kobalt und Nickel zum Beispiel wird die Magnetisierung innerhalb von etwa einer Pikosekunde (10-12 s) nach dem Auftreffen des Laserpulses auf das Material ausgelöscht. Daraus ergibt sich die Frage, über welche Kanäle der mit der Magnetisierung verbundene Drehimpuls während der kurzen verfügbaren Zeit auf andere Reservoire übertragen wird.

Nun konnte eine internationale Kooperation von Forschenden bei BESSY II den Drehimpulstransfer in einer Probe aus Eisen-Gadolinium erstmals im Detail verfolgen. An der Studie unter Federführung von Dr. Ilie Radu (MBI) und Prof. Stefan Eisebitt (TU Berlin, MBI) haben auch Teams des HZB sowie der Nihon University in Japan mitgewirkt.

Experiment an der Femtoslicing Beamline

Die Eisen-Gadolinium-Probe ist ferrimagnetisch: benachbarte Eisen (Fe)- und Gadolinium (Gd)-Atome sind in entgegengesetzter Richtung magnetisiert. Die Proben wurden zunächst mit Laserstrahlung angeregt und dann mit ultrakurzen, zirkular polarisierten Röntgenpulsen an der Femtoslicing-Beamline von BESSY II untersucht. Dadurch ließ sich die unterschiedliche magnetfeldabhängige Absorption zirkular polarisierter Röntgenpulse durch die Fe- und Gd-Atome als Funktion der Zeit beobachten.

Dieser Ansatz ermöglicht es, die ultraschnelle Entmagnetisierung sowohl beim Element Eisen als auch beim Gadolinium jeweils einzeln zu verfolgen. Darüber hinaus ist es sogar möglich, bei der Analyse der jeweiligen Absorptionsspektren zwischen dem in der Bahnbewegung und im Spin der Elektronen gespeicherten Drehimpuls zu unterscheiden.

Mit diesem detaillierten "Röntgenbild" fanden die Wissenschaftler heraus, dass während des Entmagnetisierungsprozesses der GdFe-Legierung der Drehimpuls von Gd- und Fe-Spins zu den Orbitalmomenten und schließlich zum Gitter fließt. Und zwar auf einer Zeitskala von weniger als einer Picosekunde.

Schnellere Datenspeicherung

Da kurze Laserpulse auch zum permanenten Umschalten der Magnetisierung und damit zum Schreiben von Bits für die magnetische Datenspeicherung verwendet werden können, ist der Einblick in die Dynamik dieser grundlegenden Mechanismen von großer Bedeutung, um neue Ansätze zu entwickeln, die es ermöglichen, Daten viel schneller als heute auf Massenspeichermedien zu schreiben.

 

MBI/HZB

  • Link kopieren

Das könnte Sie auch interessieren

  • Mesoporöses Silizium: Halbleiter mit neuen Talenten
    Science Highlight
    25.02.2025
    Mesoporöses Silizium: Halbleiter mit neuen Talenten
    Silizium ist das bekannteste Halbleitermaterial. Doch eine gezielte Nanostrukturierung kann die Materialeigenschaften drastisch verändern. Ein Team am HZB hat mit einer eigens entwickelten Ätzapparatur nun mesoporöse Siliziumschichten mit unzähligen winzigen Poren hergestellt und ihre elektrische Leitfähigkeit sowie Thermokraft untersucht. Die Forschenden haben damit erstmals aufgeklärt, wie der elektronische Transport in diesem mesoporösen Silizium funktioniert. Das Material hat großes Potenzial für Anwendungen und könnte auch Qubits für Quantencomputer thermisch isolieren.
  • Innovative Batterie-Elektrode aus Zinn-Schaum
    Science Highlight
    24.02.2025
    Innovative Batterie-Elektrode aus Zinn-Schaum
    Metallbasierte Elektroden in Lithium-Ionen-Akkus versprechen deutlich höhere Kapazitäten als konventionelle Graphit-Elektroden. Leider degradieren sie aufgrund von mechanischen Beanspruchungen während der Lade- und Entladezyklen. Nun zeigt ein Team am HZB, dass ein hochporöser Schaum aus Zinn den mechanischen Stress während der Ladezyklen deutlich besser abfedern kann. Das macht Zinn-Schäume als potentielles Material für Lithium-Batterien interessant.
  • BESSY II: Katalysator-Baustein für die Sauerstoffbildung durch Photosynthese nachgebildet
    Science Highlight
    20.02.2025
    BESSY II: Katalysator-Baustein für die Sauerstoffbildung durch Photosynthese nachgebildet
    In einem kleinen Manganoxid-Cluster haben Teams von HZB und HU Berlin eine besonders spannende Verbindung entdeckt: Zwei Mangan-Zentren mit zwei stark unterschiedlichen Oxidationsstufen und hohem Spin. Dieser Komplex ist das einfachste Modell eines Katalysators, der als etwas größerer Cluster auch in der natürlichen Photosynthese vorkommt und dort die Bildung von molekularem Sauerstoff ermöglicht. Die Entdeckung gilt als wichtiger Schritt auf dem Weg zu einem vollständigen Verständnis der Photosynthese.