Katalysatorforschung für Solare Brennstoffe: Amorphes Molybdänsulfid funktioniert am besten

Die Rasterelektronenmikroskopie zeigt einen Molybdänsulfidfilm, der bei Raumtemperatur aufgebracht wurde.

Die Rasterelektronenmikroskopie zeigt einen Molybdänsulfidfilm, der bei Raumtemperatur aufgebracht wurde. © HZB

Spektroskopische Messungen zeigen, wie sich im Lauf der Zeit katatylisch aktive Nanoinseln aus MoS<sub>2</sub> bilden.

Spektroskopische Messungen zeigen, wie sich im Lauf der Zeit katatylisch aktive Nanoinseln aus MoS2 bilden. © HZB

Für die Produktion von Wasserstoff mit Sonnenlicht werden effiziente und preisgünstige Katalysatoren gebraucht. Molybdänsulfide gelten als gute Kandidaten. Nun hat ein Team am HZB aufgeklärt, welche Prozesse während der Katalyse an  Molybdänsulfiden ablaufen und wieso ausgerechnet amorphes Molydänsulfid am besten funktioniert. Die Ergebnisse wurden im Fachjournal ACS-Catalysis veröffentlicht.

Mit Sonnenlicht lässt sich nicht nur Strom erzeugen, sondern auch Wasserstoff. Wasserstoff ist ein klimaneutraler Brennstoff, der Energie chemisch speichert und bei Bedarf wieder abgibt: entweder direkt über Verbrennung (wobei nur Wasser entsteht) oder als elektrische Energie in einer Brennstoffzelle. Doch um mit Sonnenlicht Wasserstoff zu produzieren, werden Katalysatoren benötigt, die die elektrolytische Aufspaltung von Wasser in Sauerstoff und Wasserstoff beschleunigen.

Auf die Herstellung kommt es an

Eine besonders interessante Materialklasse für Katalysatoren für die Wasserstoff­ent­wicklung sind Molybdänsulfide (MoSx). Sie sind deutlich günstiger als Katalysatoren aus Platin oder Ruthenium. In einer umfangreichen Studie hat ein Team um Prof. Dr. Sebastian Fiechter am HZB-Institut für Solare Brennstoffe nun eine Reihe von Molybdänsulfid-Schichten hergestellt und untersucht. Die Proben wurden bei verschiedenen Temperaturen auf einem elektrisch leitenden Substrat abgeschieden, von Raumtemperatur (RT) bis 500 °C. Dabei ändern sich mit zunehmender Abscheidungstemperatur Morphologie und Struktur der Schichten (siehe SEM-Bilder). Während bei höheren Temperaturen kristalline Bereiche entstehen, ist Molybdänsulfid, das bei Raumtemperatur abgeschieden wurde, amorph. Genau diese amorphen Molybdänsulfidproben besitzen nach einer Aktivierungsphase die höchste katalytische Aktivität. 

Amorphe Proben: ein höllischer Geruch

Dabei setzt ein Katalysator aus amorphem Molybdänsulfid bei der Elektrolyse von Wasser nicht nur Wasserstoff, sondern in der Anfangsphase auch Schwefelwasser­stoffgas frei. Der Schwefel dafür musste aus dem Katalysatormaterial stammen, das bei diesem Prozess seine katalytische Aktivität erstaunlicherweise deutlich verbessert. Fiechter und sein Team haben diesen Prozess nun gründlich unter die Lupe genommen und schlagen eine Erklärung für diesen Befund vor:

Spektroskopie bringt Aufschluss

Sie untersuchten Proben aus amorphen Molybdänsulfid im Einsatz als Katalysator bei der Wasserspaltung mit verschiedenen spektroskopischen Methoden, darunter auch in-situ Raman-Spektroskopie. Diese Messungen zeigen, dass sich in amorphen Molybdänsulfid-Proben durch das Austreten von Schwefel aus Molybdänclustern mit der Zeit nanokristalline Bereiche von Molydändisulfid (MoS2) bilden. Zeitgleich entsteht immer weniger Schwefelwasserstoff, so dass die Wasserstoffproduktion dominant wird.

Nanokristalline Inseln

„Wir können aus den Messdaten ableiten, dass sich durch das Austreten von Schwefel schwefelarme Bereiche mit nanokristallinen MoS2-Inseln bilden. Diese Inseln fungieren als katalytisch aktive Teilchen“, erklärt Fanxing Xi, die die Messungen im Rahmen ihrer Promotion durchgeführt hat. „Diese Einblicke können dazu beitragen, die Aktivität und Stabilität dieses vielversprechenden Katalysators für die Wasserstoffentwicklung im Prozess der Wasserspaltung weiter zu verbessern und das Material an einen mit Sonnenlicht betriebenen Elektrolyseur anzukoppeln“, sagt Fiechter.

 

Zur Publikation in ACS Catalysis (2019): Structural Transformation Identification of Sputtered Amorphous MoSx as an Efficient Hydrogen-Evolving Catalyst during Electrochemical Activation; Fanxing Xi, Peter Bogdanoff, Karsten Harbauer, Paul Plate, Christian Höhn, Jörg Rappich, Bin Wang, Xiaoyu Han, Roel van de Krol, and Sebastian Fiechter.

Doi: 10.1021/acscatal.8b04884

 

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Science Highlight
    08.05.2025
    Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Neue organisch-anorganische Hybridmaterialien auf Basis von Wismut sind hervorragend als Röntgendetektoren geeignet, sie sind deutlich empfindlicher als handelsübliche Röntgendetektoren und langzeitstabil. Darüber hinaus können sie ohne Lösungsmittel durch Kugelmahlen hergestellt werden, einem umweltfreundlichen Syntheseverfahren, das auch in der Industrie genutzt wird. Empfindlichere Detektoren würden die Strahlenbelastung bei Röntgenuntersuchungen erheblich reduzieren.

  • Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Nachricht
    07.05.2025
    Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Die Bundesanstalt für Materialforschung und -prüfung (BAM), das Helmholtz-Zentrum Berlin (HZB) und die Humboldt-Universität zu Berlin (HU Berlin) haben ein Memorandum of Understanding (MoU) zur Gründung des Berlin Battery Lab unterzeichnet. Das Labor wird die Expertise der drei Institutionen bündeln, um die Entwicklung nachhaltiger Batterietechnologien voranzutreiben. Die gemeinsame Forschungsinfrastruktur soll auch der Industrie für wegweisende Projekte in diesem Bereich offenstehen.
  • BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Einem internationalen Team ist es an BESSY II erstmals gelungen, einen besonders schnellen Prozess im Inneren eines magnetischen Schichtsystems, eines Spinventils, aufzuklären: An der Femtoslicing-Beamline von BESSY II konnten sie die ultraschnelle Entmagnetisierung durch spinpolarisierte Stromimpulse beobachten. Die Ergebnisse helfen bei der Entwicklung von spintronischen Bauelementen für die schnellere und energieeffizientere Verarbeitung und Speicherung von Information. An der Zusammenarbeit waren Teams der Universität Straßburg, des HZB, der Universität Uppsala sowie weiterer Universitäten beteiligt.