Wasser ist homogener als gedacht
Um die bekannten Anomalien in Wasser zu erklären, gehen manche Forscher davon aus, dass Wasser auch bei Umgebungsbedingungen aus einer Mischung von zwei Phasen besteht. Neue röntgenspektroskopische Analysen an BESSY II, der ESRF und der Swiss Light Source zeigen jedoch, dass dies nicht der Fall ist. Bei Raumtemperatur und normalem Druck bilden die Wassermoleküle ein fluktuierendes Netz mit durchschnittlich je 1,74 ± 2.1% Donator- und Akzeptor-Wasserstoffbrückenbindungen pro Molekül, die eine tetrahedrische Koordination zwischen nächsten Nachbarn ermöglichen.
Wasser ist das „Element“ des Lebens, die meisten biologischen Prozesse sind auf Wasser angewiesen. Dennoch gibt Wasser noch immer Rätsel auf. So dehnt es sich aus, wenn es gefriert und zeigt weitere Anomalien, wenn sich Temperatur oder Druck verändern. Das sogenannte Phasendiagramm von Wasser ist relativ komplex. Wilhelm Conrad Röntgen hatte Ende des 19.ten Jahrhunderts eine Erklärung dafür vorgeschlagen: Flüssiges Wasser könnte aus einer Mischung von zwei unterschiedlichen Phasen bestehen, in einer befänden sich die Wassermoleküle in einem geordneten Zustand so wie im Eis, in der anderen Phase dagegen wären die Wassermoleküle völlig ungebunden wie in einem Gas. Röntgen selbst hatte Zweifel an diesem „Mischungsmodell“. Denn es ist deutlich komplizierter als das „Kontinuumsmodell“, das davon ausgeht, dass sich in flüssigem Zustand die Wassermoleküle über Wasserstoffbrückenbindungen lose und ungeordnet vernetzen. Doch tatsächlich schienen in den letzten Jahren neue Röntgenstudien eher das Mischungsmodell zu stützen.
Messungen an drei Lichtquellen
Nun hat ein internationales Team um Prof. Alexander Föhlisch (HZB und Universität Potsdam) an der Synchrotronlichtquelle BESSY II sowie an der European Synchrotron Radiation Facility ESRF und der Swiss Light Source Wasserproben mit modernsten röntgenspektroskopischen Methoden untersucht. Die Messdaten zeigen, dass bei Umgebungsbedingungen Wassermoleküle über Wasserstoffbrückenbindungen mit ihren nächsten Nachbarn nahezu tetahedral koordiniert sind. Pro Molekül gibt es jeweils 1,74 ± 2,1% Akzeptor- und Donator-H-Bindungen, also insgesamt fast vier Bindungen, was eine tetrahedrale Koordination ermöglicht.
Kontinuumsmodell passt
Darüber hinaus konnten die Wissenschaftler aus den Daten auch ermitteln, wie sich Wassermoleküle mit ihren übernächsten Nachbarn koordinieren. Die Röntgenspektren spiegeln auch die unterschiedliche Dynamik von verschiedenen Anregungsprozessen, so findet die kurzzeitige Bildung oder Lösung von Wasserstoffbrücken tausendmal schneller statt als eine Anregung der Wassermoleküle selbst. Die Ergebnisse zeigen, dass das Kontinuumsmodell Wasser bei Umgebungsbedingungen angemessen beschreibt.
Die Studie geht auf weitere offene Fragen im Phasendiagramm von Wasser ein, insbesondere zur möglichen Existenz eines zweiten kritischen Punktes im sogenannten "Niemandsland" des unterkühlten Wassers.
Die Studie wurde in den Proceedings der National Academy of Science, PNAS 2019, veröffentlicht: Compatibility of quantitative X-ray spectroscopy with continuous distribution models of water at ambient conditions. Johannes Niskanen, Mattis Fondell, Sebastian Eckert, Raphael M. Jay, Annette Pietzsch, Vinicius Vaz da Cruz, Alexander Föhlisch
DOI:10.1073/pnas.1815701116