Grüne Spintronik: Mit Spannung Superferromagnetismus erzeugen

Die Kegel symbolisieren die Magnetisierung der Nanopartikel auf dem Bariumtitanat-Gitter. Ohne elektrisches Feld ist ihre Magnetisierung ungeordnet.  

Die Kegel symbolisieren die Magnetisierung der Nanopartikel auf dem Bariumtitanat-Gitter. Ohne elektrisches Feld ist ihre Magnetisierung ungeordnet.   © HZB

Ein elektrisches Feld erzeugt im Bariumtitanat-Gitter mechanische Spannungen, die sich auf die darüber liegenden Eisen-Nanopartikel übertragen. Dadurch richten sich die Nanopartikel lokal zu einer superferromagnetischen Region aus,

Ein elektrisches Feld erzeugt im Bariumtitanat-Gitter mechanische Spannungen, die sich auf die darüber liegenden Eisen-Nanopartikel übertragen. Dadurch richten sich die Nanopartikel lokal zu einer superferromagnetischen Region aus, © HZB

Ein HZB-Team hat zusammen mit internationalen Partnern an der Lichtquelle BESSY II ein neues Phänomen in Eisen-Nanokörnern auf einem ferroelektrischen Substrat beobachtet: Die magnetischen Momente der Eisenkörner richten sich superferromagnetisch aus, sobald eine elektrische Spannung anliegt. Der Effekt funktioniert bei Raumtemperatur und könnte zu neuen Materialien für IT-Bauelemente und Datenspeicher führen, die weniger Energie verbrauchen.

In heutigen Datenspeichern müssen magnetische Domänen mit Hilfe eines externen Magnetfeld umgeschaltet werden, welches durch elektrischen Strom erzeugt wird.  Dies benötigt viel Energie. Nun haben Forscherteams aus Frankreich, Spanien und Deutschland gezeigt, dass auf der Nanoskala ein anderer Ansatz machbar ist: „Wir können lokal in unserer Probe mit einer elektrischen Spannung und minimalem Energieaufwand magnetische Ordnung erzeugen”, berichtet der Leiter des Experiments Dr. Sergio Valencia, HZB.

Nanoteilchen auf ferroelektrischer Unterlage

Die Proben bestehen aus einem keilförmigen Eisenfilm, der auf einem Substrat aus Bariumtitanat  (BaTiO3) aufgebracht wurde. Bariumtitanat ist für seine ferroelektrischen und ferroelastischen Eigenschaften bekannt: Ein elektrisches Feld kann das Kristallgitter verzerren und erzeugt mechanische Spannungen im Gitter. Analysen mit einem Elektronenmikroskop zeigten, dass der Eisenfilm aus winzigen Nanokörnern (Durchmesser 2,5 Nanometer) besteht. Am „dünnen“ Ende  ist der Eisenkeil nur noch 0,5 Nanometer dick, so dass die Nanokörner hier nicht mehr dreidimensional sind, sondern als “null”-Dimensional gelten. Ihre magnetischen Momente sind in diesem Bereich völlig ungeordnet, in einem superparamagnetischen Zustand.

Magnetische Ordnung an BESSY II kartiert

„Am X-PEEM können wir die magnetische Ordnung auf mikroskopischer Skala kartieren. Dabei können wir genau beobachten, was geschieht, wenn wir ein elektrisches Feld an die Probe anlegen. In diesem Fall sehen wir, dass sich die ungeordneten magnetischen Momente der Eisenkörner ausrichten, so dass sich eine superferromagnetische Region ausbildet”, erklärt Dr. Ashima Arora, die die Experimente während ihrer Promotion durchführte. Das elektrische Feld induziert mechanische Spannungen im BaTiO3, die sich offenbar auf die Eisen-Nanokörner am dünnen Ende des Eisenfilm-Keils übertragen und sie zwingen, sich auszurichten.  

Effekt bei Raumtemperatur

Dieses Phänomen konnte das Team nahe der Raumtemperatur beobachten, also nicht – wie häufig in der Spintronik – bei tiefen Temperaturen. „Wir sind deshalb zuversichtlich, dass sich aus dieser Kombination von ferroelektrischen Materialien und magnetischen Nanopartikeln neuartige Bauelemente für die Spintronik entwickeln lassen, die mit sehr viel weniger Energie Daten verarbeiten oder speichern könnten”, sagt Valencia.  

Die Ergebnisse sind in Physical Review Materials (2019) publiziert: "Switching on Superferromagnetism"

A. Arora, L. C. Phillips, P. Nukala, M. Ben Hassine , A.A. Ünal, B. Dkhil, Ll. Balcells, O. Iglesias, A. Barthélémy, F. Kronast, M. Bibes, and S. Valencia

DOI: 10.1103/PhysRevMaterials.3.024403


arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Perowskit-Solarzellen: Der Schlüssel zur Langzeitstabilität
    Science Highlight
    21.02.2025
    Perowskit-Solarzellen: Der Schlüssel zur Langzeitstabilität
    Perowskit-Solarzellen sind kostengünstig in der Herstellung und hocheffizient. Im Außeneinsatz unter realen Wetterbedingungen ist jedoch noch fraglich, wie lange sie stabil bleiben. Dieses Thema greift nun eine internationale Kooperation unter Leitung von Prof. Antonio Abate in der Fachzeitschrift Nature Reviews Materials auf. Die Forschenden untersuchten die Auswirkungen von wiederholten thermischen Zyklen auf Mikrostrukturen und Wechselwirkungen zwischen den verschiedenen Schichten von Perowskit-Solarzellen. Das Fazit: Der entscheidende Faktor für die Degradation von Metall-Halogenid-Perowskiten sind thermische Spannungen. Daraus lassen sich Strategien ableiten, um die Langzeitstabilität von Perowskit-Solarzellen gezielt zu steigern.
  • BESSY II: Katalysator-Baustein für die Sauerstoffbildung durch Photosynthese nachgebildet
    Science Highlight
    20.02.2025
    BESSY II: Katalysator-Baustein für die Sauerstoffbildung durch Photosynthese nachgebildet
    In einem kleinen Manganoxid-Cluster haben Teams von HZB und HU Berlin eine besonders spannende Verbindung entdeckt: Zwei Mangan-Zentren mit zwei stark unterschiedlichen Oxidationsstufen und hohem Spin. Dieser Komplex ist das einfachste Modell eines Katalysators, der als etwas größerer Cluster auch in der natürlichen Photosynthese vorkommt und dort die Bildung von molekularem Sauerstoff ermöglicht. Die Entdeckung gilt als wichtiger Schritt auf dem Weg zu einem vollständigen Verständnis der Photosynthese.
  • HZB schafft erneut Weltrekord bei CIGS-Pero-Tandemsolarzellen
    Nachricht
    04.02.2025
    HZB schafft erneut Weltrekord bei CIGS-Pero-Tandemsolarzellen
    Durch die Kombination von zwei Halbleiterdünnschichten zu einer Tandemsolarzelle sind hohe Wirkungsgrade bei minimalem ökologischem Fußabdruck erreichbar. Teams aus dem HZB und der Humboldt-Universität zu Berlin haben nun eine Tandemzelle aus CIGS und Perowskit vorgestellt, die mit einem Wirkungsgrad von 24,6 % den neuen Weltrekord hält. Dieser Wert wurde durch das Fraunhofer-Institut für Solare Energiesysteme ISE zertifiziert.