Grüne Spintronik: Mit Spannung Superferromagnetismus erzeugen

Die Kegel symbolisieren die Magnetisierung der Nanopartikel auf dem Bariumtitanat-Gitter. Ohne elektrisches Feld ist ihre Magnetisierung ungeordnet.  

Die Kegel symbolisieren die Magnetisierung der Nanopartikel auf dem Bariumtitanat-Gitter. Ohne elektrisches Feld ist ihre Magnetisierung ungeordnet.   © HZB

Ein elektrisches Feld erzeugt im Bariumtitanat-Gitter mechanische Spannungen, die sich auf die darüber liegenden Eisen-Nanopartikel übertragen. Dadurch richten sich die Nanopartikel lokal zu einer superferromagnetischen Region aus,

Ein elektrisches Feld erzeugt im Bariumtitanat-Gitter mechanische Spannungen, die sich auf die darüber liegenden Eisen-Nanopartikel übertragen. Dadurch richten sich die Nanopartikel lokal zu einer superferromagnetischen Region aus, © HZB

Ein HZB-Team hat zusammen mit internationalen Partnern an der Lichtquelle BESSY II ein neues Phänomen in Eisen-Nanokörnern auf einem ferroelektrischen Substrat beobachtet: Die magnetischen Momente der Eisenkörner richten sich superferromagnetisch aus, sobald eine elektrische Spannung anliegt. Der Effekt funktioniert bei Raumtemperatur und könnte zu neuen Materialien für IT-Bauelemente und Datenspeicher führen, die weniger Energie verbrauchen.

In heutigen Datenspeichern müssen magnetische Domänen mit Hilfe eines externen Magnetfeld umgeschaltet werden, welches durch elektrischen Strom erzeugt wird.  Dies benötigt viel Energie. Nun haben Forscherteams aus Frankreich, Spanien und Deutschland gezeigt, dass auf der Nanoskala ein anderer Ansatz machbar ist: „Wir können lokal in unserer Probe mit einer elektrischen Spannung und minimalem Energieaufwand magnetische Ordnung erzeugen”, berichtet der Leiter des Experiments Dr. Sergio Valencia, HZB.

Nanoteilchen auf ferroelektrischer Unterlage

Die Proben bestehen aus einem keilförmigen Eisenfilm, der auf einem Substrat aus Bariumtitanat  (BaTiO3) aufgebracht wurde. Bariumtitanat ist für seine ferroelektrischen und ferroelastischen Eigenschaften bekannt: Ein elektrisches Feld kann das Kristallgitter verzerren und erzeugt mechanische Spannungen im Gitter. Analysen mit einem Elektronenmikroskop zeigten, dass der Eisenfilm aus winzigen Nanokörnern (Durchmesser 2,5 Nanometer) besteht. Am „dünnen“ Ende  ist der Eisenkeil nur noch 0,5 Nanometer dick, so dass die Nanokörner hier nicht mehr dreidimensional sind, sondern als “null”-Dimensional gelten. Ihre magnetischen Momente sind in diesem Bereich völlig ungeordnet, in einem superparamagnetischen Zustand.

Magnetische Ordnung an BESSY II kartiert

„Am X-PEEM können wir die magnetische Ordnung auf mikroskopischer Skala kartieren. Dabei können wir genau beobachten, was geschieht, wenn wir ein elektrisches Feld an die Probe anlegen. In diesem Fall sehen wir, dass sich die ungeordneten magnetischen Momente der Eisenkörner ausrichten, so dass sich eine superferromagnetische Region ausbildet”, erklärt Dr. Ashima Arora, die die Experimente während ihrer Promotion durchführte. Das elektrische Feld induziert mechanische Spannungen im BaTiO3, die sich offenbar auf die Eisen-Nanokörner am dünnen Ende des Eisenfilm-Keils übertragen und sie zwingen, sich auszurichten.  

Effekt bei Raumtemperatur

Dieses Phänomen konnte das Team nahe der Raumtemperatur beobachten, also nicht – wie häufig in der Spintronik – bei tiefen Temperaturen. „Wir sind deshalb zuversichtlich, dass sich aus dieser Kombination von ferroelektrischen Materialien und magnetischen Nanopartikeln neuartige Bauelemente für die Spintronik entwickeln lassen, die mit sehr viel weniger Energie Daten verarbeiten oder speichern könnten”, sagt Valencia.  

Die Ergebnisse sind in Physical Review Materials (2019) publiziert: "Switching on Superferromagnetism"

A. Arora, L. C. Phillips, P. Nukala, M. Ben Hassine , A.A. Ünal, B. Dkhil, Ll. Balcells, O. Iglesias, A. Barthélémy, F. Kronast, M. Bibes, and S. Valencia

DOI: 10.1103/PhysRevMaterials.3.024403


arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Synchrotronstrahlungsquellen: Werkzeugkästen für Quantentechnologien
    Science Highlight
    01.12.2025
    Synchrotronstrahlungsquellen: Werkzeugkästen für Quantentechnologien
    Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.
  • Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Science Highlight
    25.11.2025
    Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Eisen-Stickstoff-Kohlenstoff-Katalysatoren haben das Potenzial, teure Platinkatalysatoren in Brennstoffzellen zu ersetzen. Dies zeigt eine Studie aus Helmholtz-Zentrum Berlin (HZB), der Physikalisch-Technischen Bundesanstalt (PTB) und der Universitäten in Tartu und Tallinn, Estland. An BESSY II beobachtete das Team, wie sich komplexe Mikrostrukturen in den Proben bilden. Anschließend analysierten sie, welche Strukturparameter für die Förderung der bevorzugten elektrochemischen Reaktionen besonders wichtig waren. Der Rohstoff für solche Katalysatoren ist gut zersetzter Torf.
  • Helmholtz-Nachwuchsgruppe zu Magnonen
    Nachricht
    24.11.2025
    Helmholtz-Nachwuchsgruppe zu Magnonen
    Dr. Hebatalla Elnaggar baut am HZB eine neue Helmholtz-Nachwuchsgruppe auf. An BESSY II will die Materialforscherin sogenannte Magnonen in magnetischen Perowskit-Dünnschichten untersuchen. Sie hat sich zum Ziel gesetzt, mit ihrer Forschung Grundlagen für eine zukünftige Terahertz-Magnon-Technologie zu legen: Magnonische Bauelemente im Terahertz-Bereich könnten Daten mit einem Bruchteil der Energie verarbeiten, die moderne Halbleiterbauelemente benötigen, und das mit bis zu tausendfacher Geschwindigkeit.

    Dr. Hebatalla Elnaggar will an BESSY II magnetische Perowskit-Dünnschichten untersuchen und damit die Grundlagen für eine künftige Magnonen-Technologie schaffen.