Neutronenforschung hilft bei der Entwicklung von zerstörungsfreien Prüfverfahren

(a) Neutronen-Eigenspannungsmessung an einer Schweißprobe aus handelsüblichen Stahl, (b) Magnetfeldmessung, (c) Schweißnahtquerschliff.

(a) Neutronen-Eigenspannungsmessung an einer Schweißprobe aus handelsüblichen Stahl, (b) Magnetfeldmessung, (c) Schweißnahtquerschliff. © BAM

Materialermüdung zeigt sich häufig zuerst daran, dass im Innern des Materials Bereiche mit stark unterschiedlichen Eigenspannungen aneinandergrenzen. An der Neutronenquelle BER II am HZB hat ein Team der Bundesanstalt für Materialforschung und –prüfung (BAM) die Eigenspannungen von Schweißnähten aus ferromagnetischem Stahl analysiert. Die Ergebnisse helfen zerstörungsfreie elektromagnetische Prüfverfahren zu verbessern.

Neutronenmessungen sind nach wie vor das Verfahren der Wahl, um vorhandene Eigenspannungen tief im Inneren von Materialien sehr exakt zu ermitteln. Hohe Unterschiede in Eigenspannungen sind für ein Material gleichbedeutend mit großem „Stress“, unter denen es sogar reißen kann. Allerdings stehen Neutronen nicht einfach so zur Verfügung, sondern erfordern Großgeräte wie die Berliner Neutronenquelle am HZB.

Ein Team des Fachbereichs 8.4 von der Bundesanstalt für Materialforschung (BAM) arbeitet daran, feinste Materialveränderung in ferromagnetischen Materialien frühzeitig zu identifizieren. Nun sind sie auf diesem Weg einen großen Schritt weiter gekommen. Die Forscher untersuchten dafür zunächst die sehr schwachen Magnetfelder von Schweißnähten aus einem ferromagnetischen Stahl. Mit Hilfe von speziellen Magnetfeldsensoren (sogenannten GMR-Sensoren; engl.: giant magneto resistance, dt.: Riesenmagnetwiderstand) gelang dies mit einer deutlich höheren Empfindlichkeit als sie zum Vermessen des Erdmagnetfelds notwendig ist und mit einer Ortsauflösung im zehntel Mikrometerbereich.

Im Anschluss identifizierten die Forscher die unterschiedlichen Materialeigenheiten der Schweißnähte, die beim Schweißen durch Erhitzen und Abkühlen des Materials entstehen. Dabei stellten sie überraschende Zusammenhänge fest: bereits geringfügige Veränderungen im Werkstoff, erzeugten Variationen im Magnetfeld. Die größten und deutlichsten Magnetfeldänderungen zeigten sich dabei in Bereichen mit homogener Mikrostruktur der Proben.

Mit Hilfe der Neutronenanalysen am HZB konnten die Forscher unter Leitung von Prof. Giovanni Bruno ihre Vermutung belegen, dass offenbar genau in diesen Bereichen stark unterschiedliche Eigenspannungsniveaus aufeinandertreffen.

Gegenwärtig sind die Forscher von der BAM auf der Suche, unter welchen Umständen Eigenspannungsgradienten solch hohe magnetische Streufelder erzeugen. Es lohnt sich, die Umstände noch genauer zu untersuchen. Damit rückt die Vision näher, mit Hilfe von Magnetfeldsensoren relevante Materialveränderungen bereits frühzeitig zu erkennen, bevor ein Riss überhaupt entsteht – und zwar preiswert und zerstörungsfrei.

Publiziert im Journal of Nondestructive Evaluation, 2018, Band 37: Influence of the microstructure on magnetic stray fields of low-carbon steel welds; R. Stegemann, S. Cabeza, M. Pelkner, V. Lyamkin, A. Pittner, D. Werner, R. Wimpory, M. Boin, M. Kreutzbruck, G. Bruno.

Robert Stegemann

  • Link kopieren

Das könnte Sie auch interessieren

  • Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Science Highlight
    05.12.2024
    Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Für die Produktion von Wasserstoff mit Elektrolyse werden Iridiumbasierte Katalysatoren benötigt. Nun zeigt ein Team am HZB und an der Lichtquelle ALBA, dass die neu entwickelten P2X-Katalysatoren, die mit nur einem Viertel des Iridiums auskommen, ebenso effizient und langzeitstabil sind wie die besten kommerziellen Katalysatoren. Messungen an BESSY II haben nun ans Licht gebracht, wie die besondere chemische Umgebung im P2X-Kat während der Elektrolyse die Wasserspaltung befördert.
  • Ultraschnelle Dissoziation von Molekülen an BESSY II analysiert
    Science Highlight
    02.12.2024
    Ultraschnelle Dissoziation von Molekülen an BESSY II analysiert
    Ein internationales Team hat an BESSY II erstmals beobachtet, wie schwere Moleküle (Bromchlormethan) in kleinere Fragmente zerfallen, wenn sie Röntgenlicht absorbieren. Mit einer neu entwickelten Analysemethode gelang es ihnen, die ultraschnelle Dynamik dieses Prozesses sichtbar zu machen. Dabei lösen die Röntgenphotonen einen „molekularen Katapulteffekt“ aus: Leichte Atomgruppen werden zuerst herausgeschleudert, ähnlich wie Geschosse, die von einem Katapult abgeschossen werden, während die schwereren Atome – Brom und Chlor – sich deutlich langsamer trennen.
  • Protonen gegen Krebs: Neue Forschungsbeamline für innovative Strahlentherapien
    Nachricht
    27.11.2024
    Protonen gegen Krebs: Neue Forschungsbeamline für innovative Strahlentherapien
    Das HZB hat gemeinsam mit der Universität der Bundeswehr München eine neue Beamline für die präklinische Forschung eingerichtet. Sie ermöglicht künftig am HZB Experimente an biologischen Proben zu innovativen Strahlentherapien mit Protonen.