Die Nutzerkoordination auf Roadtour: Werben für europäische Lichtquellen

© HZB / J. Politt

Synchrotrons sind hervorragende Werkzeuge, um Materialien, Zellen oder auch Kulturgüter zu untersuchen. Doch vielen Forschenden aus Osteuropa sind diese Möglichkeiten unbekannt. Das soll sich nun dank des EU-Projektes CALIPSOplus ändern.

Für Beatrix Seidlhofer und Antje Vollmer aus der Abteilung Nutzerkoordination hieß es im Oktober 2017 Koffer packen. Das ist nichts Ungewöhnliches, denn beide sind dienstlich oft unterwegs. Meistens reisen sie nach West-, Nord- oder Südeuropa, doch dieses Mal ging ihre Reise nach Rumänien. Vor zehn Jahren wurde das Land neu in die EU aufgenommen. Es ist noch immer einer der ärmsten Staaten Europas: In Rumänien liegt das Bruttoinlandsprodukt  bei nur 8600 Euro pro Kopf, in Deutschland sind es 38.000 Euro.

„Bildung und Forschung könnten einen Weg in eine bessere Zukunft bahnen. Genau aus diesem Grund sind wir dorthin gefahren. Wir wollten unseren rumänischen Kollegen zeigen, welche Chancen die Lichtquellen in Europa bieten und dass sie Unterstützung bekommen, um dort zu messen“, sagt Beatrix Seidlhofer.

Ermöglicht werden diese Zuschüsse durch das EU-Projekt CALIPSPOplus. Es fördert den internationalen Austausch von Wissenschaftlern und den transnationalen Zugang zu den europäischen Lichtquellen. Dafür stellt die EU zehn Millionen Eurobereit. Mit den Geldern können nicht nur Messgäste bei Reisen finanziell unterstützt werden. Ein spezielles Partnerprogramm sieht auch vor, dass osteuropäische Forscher an den Lichtquellen von erfahrenen Experten betreut und angelernt werden. „Das sind tolle Möglichkeiten, für die wir aktiv in den neuen EU-Staaten werben wollen“, sagt Antje Vollmer, die Leiterin der Nutzerkoordination. Sie koordiniert das vom HZB geleitetet Partnerprogramm („Twinning Programme“) im Rahmen von CALIPSOplus.

Deshalb sind die HZB-Mitarbeiterinnen nach Rumänien gereist und haben die europäischen Lichtquellen Forschern aus zwei Universitäten und zwei Instituten vorgestellt. Dabei sprachen sie mit ihnen über ihre Arbeit und ihre Messzeit-Wünsche. „Die Forschung in Rumänien ist sehr aktuell und innovativ. Es gibt unter anderem mehrere Gruppen, die an Solarzellen forschen. Aber auch in der Mikrobiologie, Magnetismus oder Bionik haben wir interessante Projekte kennengelernt“, erzählt Seidlhofer. „Doch kaum jemand wusste, dass Messzeiten an BESSY II und anderen Lichtquellen in Europa für Unis kostenfrei sind.“ Die Informationen seien mit Begeisterung aufgenommen worden, einige Forscher wollten sogar sofort Messzeitanträge einreichen.

In Timişoara, einer Universitätsstadt im Westen des Landes, hat Beatrix Seidlhofer einen Vortrag für Abiturienten gehalten; sie selbst spricht gut rumänisch. „In Rumänien entscheiden sich immer weniger Abiturienten für die Naturwissenschaften. Deshalb wurde ich gebeten, an der Uni mit Schulabsolventen zu sprechen, um sie für Physik zu begeistern.“ Am Ende des Vortrags gab es nicht nur viele Fragen, sondern sogar Standing-Ovation der Schüler.

Nach fünf Tagen endete ihre Rundtour. Nicht nur in Rumänien, sondern auch in Berlin wirken die Eindrücke der Reise nach: „Der erste Besuch im Rahmen des CALIPSOplus-Partnerprogramms hat uns gezeigt, wie wichtig es ist, persönliche Kontakte zu knüpfen. In den neuen Mitgliedsstaaten der EU gibt es viele talentierte Menschen, die voller Ideen sind und mit wenig Geld ausgeklügelte Messvorrichtungen bauen“, sagt Beatrix Seidlhofer. Ihre Rundtour wollen sie auch 2018 fortsetzen: Dann geht die Reise nach Bulgarien, Ungarn und Portugal.

(sz)

  • Link kopieren

Das könnte Sie auch interessieren

  • Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Science Highlight
    28.03.2025
    Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Im Jahr 2023 erzeugten Photovoltaikanlagen weltweit mehr als 5% der elektrischen Energie und die installierte Leistung verdoppelt sich alle zwei bis drei Jahre. Optische Technologien können die Effizienz von Solarmodulen weiter steigern und neue Einsatzbereiche erschließen, etwa in Form von ästhetisch ansprechenden, farbigen Solarmodulen für Fassaden. Nun geben 27 Fachleute einen umfassenden Überblick über den Stand der Forschung und eine Einschätzung, welche Innovationen besonders zielführend sind. Der Bericht, der auch für Entscheidungsträger*innen in der Forschungsförderung interessant ist, wurde von Prof. Christiane Becker und Dr. Klaus Jäger aus dem HZB koordiniert.
  • Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Science Highlight
    27.03.2025
    Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.
  • BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Science Highlight
    25.03.2025
    BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Eine blütenförmige Struktur aus einer Nickel-Eisen-Legierung, die nur wenige Mikrometer misst, kann Magnetfelder lokal verstärken. Der Effekt lässt sich durch die Geometrie und Anzahl der „Blütenblätter“ steuern. Das magnetische Metamaterial wurde von der Gruppe um Dr. Anna Palau am Institut de Ciencia de Materials de Barcelona (ICMAB) mit Partnern aus dem CHIST-ERA MetaMagIC-Projekts entwickelt und nun an BESSY II in Zusammenarbeit mit Dr. Sergio Valencia untersucht. Die Mikroblüten ermöglichen vielfältige Anwendungen: Sie können die Empfindlichkeit magnetischer Sensoren erhöhen, die Energie für die Erzeugung lokaler Magnetfelder reduzieren, und am PEEM-Messplatz an BESSY II die Messung von Proben unter deutlich höheren Magnetfeldern ermöglichen.