Selbstorganisierte, molekulare Monolagen für effiziente Perowskit-Solarzellen

Das Molekül organisiert sich entlang der Oberfläche der Elektroden, bis eine geschlossene Monolage entsteht.

Das Molekül organisiert sich entlang der Oberfläche der Elektroden, bis eine geschlossene Monolage entsteht. © Saule Magomedoviene / HZB

“Self‐Assembled Hole Transporting Monolayer for Highly Efficient Perovskite Solar Cells” , Cover der aktuellen Ausgabe Advanced Energy Materials.

“Self‐Assembled Hole Transporting Monolayer for Highly Efficient Perovskite Solar Cells” , Cover der aktuellen Ausgabe Advanced Energy Materials. © Wiley/VCH

Ein Team am HZB hat ein neues Verfahren entdeckt, um effiziente Kontaktschichten in Perowskit-Solarzellen zu realisieren: Es basiert auf Molekülen, die sich selbstorganisierend anordnen und eine Monolage bilden. Die Studie wurde in Advanced Energy Materials publiziert und ist auf dem Front-Cover des Journals erschienen.

In den letzten Jahren konnten Solarzellen auf der Basis von Metall-Halid Perowskiten einen einzigartigen Anstieg im Wirkungsgrad erzielen. Diese Materialien versprechen kostengünstige und flexible Solarzellen und können mit konventionellen PV-Materialien wie Silizium zu besonders effizienten Tandem-Solarzellen kombiniert werden. Ein wichtiger Schritt zur Industriereife ist die Entwicklung effizienter elektrischer Kontaktschichten, welche die Abscheidung von Perowskit-Schichten auf unterschiedlichen Substraten erlauben.

Moleküle bilden von selbst eine Monolage

Nun hat ein Team um den HZB-Physiker Dr. Steve Albrecht in Zusammenarbeit mit dem ehemaligen DAAD-Austauschstudenten Artiom Magomedov von der Kaunas University of Technology (KTU), Litauen, ein neuartiges selbstorganisierendes Monolagen-Molekül (engl. self-assembled monolayer, SAM) synthetisiert und erfolgreich als lochleitende Schicht in Perowskit-Solarzellen eingesetzt. Das Molekül ist Carbazol-basiert und bindet sich durch eine Phosphonsäure-Gruppe an das Oxid der transparenten Elektrode. Dabei organisiert sich dieses Molekül selbstständig an der Elektrodenoberfläche, bis eine geschlossene Monolage entsteht. Diese ultradünne Schicht zeigt keine optischen Verluste und könnte durch die Selbstorganisation konform alle Oberflächen bedecken, also auch texturiertes Silizium in Tandemarchitekturen.

Minimaler Materialeinsatz - viele Optionen

Mit dieser Technik erreicht man einen äußerst geringen Materialverbrauch und die chemische Struktur der SAMs kann je nach Anwendungsgebiet angepasst werden. Damit könnten die SAMs auch als Modellsystem für zukünftige Untersuchungen der Grenzflächeneigenschaften oder des Perowskit-Wachstums dienen.

Neue SAMs am HZB-HySPRINT-Labor

Die Arbeiten fanden am HySPRINT-Labor des HZB statt, wo die Gruppe um Albrecht nun an einer neuen Generation von selbstorganisierenden Molekülen für Kontaktschichten forscht, mit denen die Solarzellen nunmehr Wirkungsgrade von über 21 % erreichen.

Anmeldung zum Patent

Da dieser Ansatz für Perowskit-Solarzellen noch nie vorher in Betracht gezogen wurde und potenziell für die industrielle Implementierung eine Rolle spielen kann, haben die Teams vom HZB und der KTU das Molekül und die Anwendung zur Patentanmeldung eingereicht. Da das wissenschaftliche Interesse für diese neue Kontaktmaterialklasse enorm ist, trägt die Fachzeitschrift in der aktuellen Ausgabe eine Abbildung zu der Veröffentlichung auf dem Front-Cover.

Publiziert in Advanced Energy Materials 2018: “Self‐Assembled Hole Transporting Monolayer for Highly Efficient Perovskite Solar Cells”. Artiom Magomedov, Amran Al‐Ashouri, Ernestas Kasparavičius, Simona Strazdaite, Gediminas Niaura, Marko Jošt, Tadas Malinauskas, Steve Albrecht and Vytautas Getautis.

Doi: 10.1002/aenm.201870139


Autor: Amran Al Ashouri, PhD student and shared first author of the publication

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Science Highlight
    08.05.2025
    Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Neue organisch-anorganische Hybridmaterialien auf Basis von Wismut sind hervorragend als Röntgendetektoren geeignet, sie sind deutlich empfindlicher als handelsübliche Röntgendetektoren und langzeitstabil. Darüber hinaus können sie ohne Lösungsmittel durch Kugelmahlen hergestellt werden, einem umweltfreundlichen Syntheseverfahren, das auch in der Industrie genutzt wird. Empfindlichere Detektoren würden die Strahlenbelastung bei Röntgenuntersuchungen erheblich reduzieren.

  • Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Nachricht
    07.05.2025
    Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Die Bundesanstalt für Materialforschung und -prüfung (BAM), das Helmholtz-Zentrum Berlin (HZB) und die Humboldt-Universität zu Berlin (HU Berlin) haben ein Memorandum of Understanding (MoU) zur Gründung des Berlin Battery Lab unterzeichnet. Das Labor wird die Expertise der drei Institutionen bündeln, um die Entwicklung nachhaltiger Batterietechnologien voranzutreiben. Die gemeinsame Forschungsinfrastruktur soll auch der Industrie für wegweisende Projekte in diesem Bereich offenstehen.
  • BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Einem internationalen Team ist es an BESSY II erstmals gelungen, einen besonders schnellen Prozess im Inneren eines magnetischen Schichtsystems, eines Spinventils, aufzuklären: An der Femtoslicing-Beamline von BESSY II konnten sie die ultraschnelle Entmagnetisierung durch spinpolarisierte Stromimpulse beobachten. Die Ergebnisse helfen bei der Entwicklung von spintronischen Bauelementen für die schnellere und energieeffizientere Verarbeitung und Speicherung von Information. An der Zusammenarbeit waren Teams der Universität Straßburg, des HZB, der Universität Uppsala sowie weiterer Universitäten beteiligt.