Selbstorganisierte, molekulare Monolagen für effiziente Perowskit-Solarzellen

Das Molekül organisiert sich entlang der Oberfläche der Elektroden, bis eine geschlossene Monolage entsteht.

Das Molekül organisiert sich entlang der Oberfläche der Elektroden, bis eine geschlossene Monolage entsteht. © Saule Magomedoviene / HZB

“Self‐Assembled Hole Transporting Monolayer for Highly Efficient Perovskite Solar Cells” , Cover der aktuellen Ausgabe Advanced Energy Materials.

“Self‐Assembled Hole Transporting Monolayer for Highly Efficient Perovskite Solar Cells” , Cover der aktuellen Ausgabe Advanced Energy Materials. © Wiley/VCH

Ein Team am HZB hat ein neues Verfahren entdeckt, um effiziente Kontaktschichten in Perowskit-Solarzellen zu realisieren: Es basiert auf Molekülen, die sich selbstorganisierend anordnen und eine Monolage bilden. Die Studie wurde in Advanced Energy Materials publiziert und ist auf dem Front-Cover des Journals erschienen.

In den letzten Jahren konnten Solarzellen auf der Basis von Metall-Halid Perowskiten einen einzigartigen Anstieg im Wirkungsgrad erzielen. Diese Materialien versprechen kostengünstige und flexible Solarzellen und können mit konventionellen PV-Materialien wie Silizium zu besonders effizienten Tandem-Solarzellen kombiniert werden. Ein wichtiger Schritt zur Industriereife ist die Entwicklung effizienter elektrischer Kontaktschichten, welche die Abscheidung von Perowskit-Schichten auf unterschiedlichen Substraten erlauben.

Moleküle bilden von selbst eine Monolage

Nun hat ein Team um den HZB-Physiker Dr. Steve Albrecht in Zusammenarbeit mit dem ehemaligen DAAD-Austauschstudenten Artiom Magomedov von der Kaunas University of Technology (KTU), Litauen, ein neuartiges selbstorganisierendes Monolagen-Molekül (engl. self-assembled monolayer, SAM) synthetisiert und erfolgreich als lochleitende Schicht in Perowskit-Solarzellen eingesetzt. Das Molekül ist Carbazol-basiert und bindet sich durch eine Phosphonsäure-Gruppe an das Oxid der transparenten Elektrode. Dabei organisiert sich dieses Molekül selbstständig an der Elektrodenoberfläche, bis eine geschlossene Monolage entsteht. Diese ultradünne Schicht zeigt keine optischen Verluste und könnte durch die Selbstorganisation konform alle Oberflächen bedecken, also auch texturiertes Silizium in Tandemarchitekturen.

Minimaler Materialeinsatz - viele Optionen

Mit dieser Technik erreicht man einen äußerst geringen Materialverbrauch und die chemische Struktur der SAMs kann je nach Anwendungsgebiet angepasst werden. Damit könnten die SAMs auch als Modellsystem für zukünftige Untersuchungen der Grenzflächeneigenschaften oder des Perowskit-Wachstums dienen.

Neue SAMs am HZB-HySPRINT-Labor

Die Arbeiten fanden am HySPRINT-Labor des HZB statt, wo die Gruppe um Albrecht nun an einer neuen Generation von selbstorganisierenden Molekülen für Kontaktschichten forscht, mit denen die Solarzellen nunmehr Wirkungsgrade von über 21 % erreichen.

Anmeldung zum Patent

Da dieser Ansatz für Perowskit-Solarzellen noch nie vorher in Betracht gezogen wurde und potenziell für die industrielle Implementierung eine Rolle spielen kann, haben die Teams vom HZB und der KTU das Molekül und die Anwendung zur Patentanmeldung eingereicht. Da das wissenschaftliche Interesse für diese neue Kontaktmaterialklasse enorm ist, trägt die Fachzeitschrift in der aktuellen Ausgabe eine Abbildung zu der Veröffentlichung auf dem Front-Cover.

Publiziert in Advanced Energy Materials 2018: “Self‐Assembled Hole Transporting Monolayer for Highly Efficient Perovskite Solar Cells”. Artiom Magomedov, Amran Al‐Ashouri, Ernestas Kasparavičius, Simona Strazdaite, Gediminas Niaura, Marko Jošt, Tadas Malinauskas, Steve Albrecht and Vytautas Getautis.

Doi: 10.1002/aenm.201870139


Autor: Amran Al Ashouri, PhD student and shared first author of the publication

  • Link kopieren

Das könnte Sie auch interessieren

  • Zwei Humboldt-Fellows am HZB
    Nachricht
    09.12.2024
    Zwei Humboldt-Fellows am HZB
    Zwei junge Wissenschaftler sind zurzeit als Humboldt-Postdoktoranden am HZB tätig. Kazuki Morita bringt seine Expertise in Modellierung und Datenanalyse in die Solarenergieforschung im Team von Prof. Antonio Abate ein. Qingping Wu ist Experte für Batterieforschung und arbeitet mit Prof. Yan Lu zusammen an Lithium-Metall-Batterien mit hoher Energiedichte.

  • Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Science Highlight
    05.12.2024
    Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Für die Produktion von Wasserstoff mit Elektrolyse werden Iridiumbasierte Katalysatoren benötigt. Nun zeigt ein Team am HZB und an der Lichtquelle ALBA, dass die neu entwickelten P2X-Katalysatoren, die mit nur einem Viertel des Iridiums auskommen, ebenso effizient und langzeitstabil sind wie die besten kommerziellen Katalysatoren. Messungen an BESSY II haben nun ans Licht gebracht, wie die besondere chemische Umgebung im P2X-Kat während der Elektrolyse die Wasserspaltung befördert.
  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.