Nanodiamanten als Photokatalysatoren

Mit Fremdatomen dotierter Schaum aus Kohlenstoff.

Mit Fremdatomen dotierter Schaum aus Kohlenstoff. © P. Knittel/Fraunhofer IAF

Diamant-Nanomaterialien gelten als heiße Kandidaten für günstige Photokatalysatoren. Sie lassen sich durch Licht aktivieren und können dann bestimmte Reaktionen zwischen Wasser und CO2 beschleunigen und klimaneutrale „solare Brennstoffe“ erzeugen. Das EU-Projekt DIACAT hat nun solche Diamant-Materialien mit Bor dotiert und an BESSY II gezeigt, wie dies die photokatalytischen Eigenschaften deutlich verbessern könnte.

Der Klimawandel ist in vollem Gang und setzt sich ungebremst fort, solange es nicht gelingt, die CO2-Emissionen deutlich zu reduzieren. Dafür brauchen wir alle Optionen. Eine Idee ist, das Treibhausgas CO2 wieder in den Energiekreislauf zurückzuführen: CO2 könnte mit Wasser zu Methanol verarbeitet werden, einem Brennstoff, der sich hervorragend transportieren und speichern lässt. Die Reaktion, die an einen Teilprozess der Photosynthese erinnert, erfordert jedoch Energie und günstige Katalysatoren. Falls es gelingt, diese Energie aus Sonnenlicht zu nutzen und lichtaktive Photokatalysatoren zu entwickeln, die nicht aus seltenen Metallen wie Platin bestehen, sondern aus preisgünstigen und reichlich vorhandenen Materialien, gäbe es eine Chance auf „grüne“ klimaneutral erzeugte Treibstoffe.

Nanomaterialien aus Kohlenstoff: Aktivierung nur mit UV

Ein Kandidat für solche Photokatalysatoren sind so genannte Diamant-Nanomaterialien – dabei handelt es  sich nicht um kostbare kristalline Diamanten, sondern um winzige Nanokristalle aus wenigen tausend Kohlenstoffatomen, die wasserlöslich sind und wie schwarzer Schlamm aussehen oder auch um nanostrukturierte „Kohlenstoff-Schäume“ mit sehr großen Oberflächen. Damit diese Materialien katalytisch aktiv werden, benötigen sie jedoch Anregung durch UV-Licht. Nur dieser Spektralbereich des Sonnenlichts ist energiereich genug, um Elektronen aus dem Material in einen „freien Zustand“ zu befördern, so dass die Reaktion zwischen Wasser und CO2 zu Methanol gelingt.

Hilft Dotieren mit Bor ?

Allerdings ist der UV-Anteil im Sonnenspektrum nicht sehr hoch. Ideal wären Photokatalysatoren, die auch das sichtbare Spektrum des Sonnenlichts nutzen könnten. Hier setzt nun die Arbeit von HZB-Forscher Dr. Tristan Petit und seinen Kooperationspartnern im Rahmen von DIACAT an: Denn Modellierungen von Prof. Dr. Karin Larsson, Universität Uppsala, hatten gezeigt, dass die sich durch das Dotieren mit Fremdatomen bestimmte Zwischenstufen in der Bandlücke dieser Materialien einbauen lassen sollten. Als besonders ereignet erschient dabei das dreiwertige Element Bor.

Ja, aber - zeigen die Messungen an BESSY II

Petit und sein Team  haben daher Proben aus polykristallinen Diamanten, Diamant-Schäumen und Nanodiamanten untersucht. Diese Proben waren zuvor von Gruppen um Prof. Dr. Anke Krüger, Würzburg, und Dr. Christoph Nebel, Freiburg, synthetisiert und im Anschluss mit dem Element Bor dotiert worden. An BESSY II konnten nun mit Hilfe von Röntgenabsorptions-Spektroskopie bestimmte Energiezustände der Elektronen vermessen werden. „Die Bor-Atome, die sich an den Oberfläche dieser Nanodiamanten befinden, führen tatsächlich zu den erwünschten Zwischenstufen in der Bandlücke“, erklärt Sneha Choudhuri, Erstautorin der Studie. Allerdings befinden sich diese Zwischenstufen sehr nahe an den Leitungsbändern, ermöglichen also bislang nicht, sichtbares Licht zu nutzen. Dies hängt aber auch, zeigen die Messungen, vom Aufbau der Nanomaterialien ab.

Ausblick: Morphologie und andere Fremdatome

„Wir können solche zusätzlichen Stufen in der Bandlücke solcher Diamantmaterialien durch gezieltes Verändern der Morphologie und Dotieren einführen und möglicherweise kontrollieren“, sagt Tristan Petit. Auch das Dotieren mit Phosphor oder Stickstoff könnte weitere Chancen bieten.

 

Publikation in Journal of Materials Chemistry A (2018):Combining nanostructuration with boron doping to alter sub band gap acceptor states in diamond materials; Sneha Choudhury, Benjamin Kiendl, Jian Ren, Fang Gao, Peter Knittel, Christoph Nebel, Amélie Venerosy, Hugues Girard, Jean-Charles Arnault, Anke Krueger, Karin Larsson & Tristan Petit

DOI: 10.1039/c8ta05594g

Mehr zum EU-Projekt DIACAT: https://www.diacat.eu/

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Science Highlight
    08.05.2025
    Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Neue organisch-anorganische Hybridmaterialien auf Basis von Wismut sind hervorragend als Röntgendetektoren geeignet, sie sind deutlich empfindlicher als handelsübliche Röntgendetektoren und langzeitstabil. Darüber hinaus können sie ohne Lösungsmittel durch Kugelmahlen hergestellt werden, einem umweltfreundlichen Syntheseverfahren, das auch in der Industrie genutzt wird. Empfindlichere Detektoren würden die Strahlenbelastung bei Röntgenuntersuchungen erheblich reduzieren.

  • Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Nachricht
    07.05.2025
    Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Die Bundesanstalt für Materialforschung und -prüfung (BAM), das Helmholtz-Zentrum Berlin (HZB) und die Humboldt-Universität zu Berlin (HU Berlin) haben ein Memorandum of Understanding (MoU) zur Gründung des Berlin Battery Lab unterzeichnet. Das Labor wird die Expertise der drei Institutionen bündeln, um die Entwicklung nachhaltiger Batterietechnologien voranzutreiben. Die gemeinsame Forschungsinfrastruktur soll auch der Industrie für wegweisende Projekte in diesem Bereich offenstehen.
  • BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Einem internationalen Team ist es an BESSY II erstmals gelungen, einen besonders schnellen Prozess im Inneren eines magnetischen Schichtsystems, eines Spinventils, aufzuklären: An der Femtoslicing-Beamline von BESSY II konnten sie die ultraschnelle Entmagnetisierung durch spinpolarisierte Stromimpulse beobachten. Die Ergebnisse helfen bei der Entwicklung von spintronischen Bauelementen für die schnellere und energieeffizientere Verarbeitung und Speicherung von Information. An der Zusammenarbeit waren Teams der Universität Straßburg, des HZB, der Universität Uppsala sowie weiterer Universitäten beteiligt.