Neutronen tasten Magnetfelder im Innern von Proben ab

Die Bilder zeigen den Verlauf der magnetischen Feldlinien im Inneren eines supraleitenden Blei-Quaders in zwei verschiedenen Schnittebenen (gestrichelter Umriss der Bleiprobe). Der Skalenstrich entspricht 5 mm.

Die Bilder zeigen den Verlauf der magnetischen Feldlinien im Inneren eines supraleitenden Blei-Quaders in zwei verschiedenen Schnittebenen (gestrichelter Umriss der Bleiprobe). Der Skalenstrich entspricht 5 mm. © HZB

Mit Hilfe einer neu entwickelten Neutronen-Tomographie-Methode hat ein HZB-Team erstmals den Verlauf von magnetischen Feldlinien im Innern von Materialien abbilden können. Die „Tensorielle Neutronen-Tomographie“ verspricht neue Einblicke in Supraleiter, Batterie-Elektroden und andere Energiematerialien.

Magnetische Felder im Innern von Proben zu messen gelingt bislang nur auf indirekte Weise. Mit Licht, Röntgenstrahlung oder Elektronen lassen sich zwar magnetische Orientierungen abtasten, allerdings nur auf den Oberflächen von Materialien. Neutronen dagegen dringen tief in die Probe ein, und können – dank ihrer eigenen magnetischen Eigenschaften – präzise Aufschluss über magnetische Felder im Inneren geben. Bislang aber ließen sich nur grob die unterschiedlich ausgerichteten magnetischen Domänen mit Hilfe von Neutronen kartieren, nicht aber die Vektorfelder (Richtungen und Stärken) des Magnetfelds im Inneren der Probe.  

"Spinpolarisierte" Neutronen

Nun hat ein Team um Dr. Nikolay Kardjilov und Dr. Ingo Manke am HZB eine neue Methode entwickelt, um die Magnetfeldlinien im Innern von massiven, dicken Proben zu vermessen: Für die Tensorielle Neutronen-Tomographie setzen sie Spin-Flipper und -Polarisatoren ein, die dafür sorgen, dass nur Neutronen mit gleichgerichteten Spins die Probe durchdringen. Treffen solche spinpolarisierten Neutronen auf ein magnetisches Feld im Innern, regt dieses die Neutronenspins zur Präzession an, so dass sich die Spin-Polarisationsrichtung verändert, was Rückschlüsse auf die Feldlinien erlaubt.

Berechnung mit TMART-Algorithmus

Mit der neu entwickelten Experimentiermethode lässt sich aus neun einzelnen Tomographien mit jeweils unterschiedlichen Neutronenspin-Einstellungen eine dreidimensionale Abbildung des Magnetfelds im Innern der Probe berechnen. Hierzu wird ein von Dr. André Hilger am HZB neu entwickelter, äußerst komplexer mathematischer Tensor-Algorithmus eingesetzt, der „TMART“ getauft wurde.

Feldlinien im Inneren von Supraleitern

Die Experten haben die neue Methode an gut verstandenen Proben getestet und evaluiert. Im Anschluss konnten sie erstmals das komplexe Magnetfeld im Inneren von supraleitendem Blei kartieren.

Die Probe aus massivem, polykristallinem Blei wurde auf 4 Kelvin abgekühlt (Blei wird supraleitend unterhalb von 7 Kelvin) und einem Magnetfeld von 0,5 Millitesla ausgesetzt. Dabei wird das Magnetfeld zwar aufgrund des Meissner-Effekts aus dem Probeninneren verdrängt, dennoch bleiben magnetische Flusslinien an den (nicht-supraleitenden) Korngrenzen der polykristallinen Probe haften. Diese Flusslinien verschwinden auch dann nicht, nachdem das äußere Feld abgeschaltet wurde, weil sie zuvor im Innern der supraleitenden Kristallkörner Ströme induziert haben, die diese Felder nun aufrechterhalten.

Anwendungen in der Materialforschung

„Zum ersten Mal können wir im Inneren eines massiven Materials das magnetische Vektor-Feld in seiner ganzen Komplexität dreidimensional sichtbar machen“ sagt HZB-Physiker Manke. „Neutronen können gleichzeitig massive Materialien durchdringen und Magnetfelder nachweisen. Es gibt zurzeit keine andere Methode, die das ermöglicht.“

Die Magnetische Tensor Tomografie ist zerstörungsfrei und kann Auflösungen bis in den Mikrometerbereich erreichen. Die Einsatzbereiche sind extrem vielfältig. Sie reichen von der Kartierung von magnetischen Feldern in Supraleitern und der Beobachtung von magnetischen Phasenübergängen bis zur Materialanalyse, die auch für die Industrie von großem Interesse ist: So lassen sich Feldverteilungen in Elektromotoren und metallischen Komponenten abbilden und Stromflüsse in Batterien, Brennstoffzellen oder anderen Antriebssystemen mit dieser Methode visualisieren.

 

Zur Publikation in Nature Communications (2018): "Tensorial Neutron Tomography of Three-Dimensional Magnetic Vector Fields in Bulk Materials"; A. Hilger, I. Manke, N. Kardjilov, M. Osenberg, H. Markötter & J. Banhart; 

DOI: 10.1038/s41467-018-06593-4

arö

Das könnte Sie auch interessieren

  • Grüner Wasserstoff: Wie photoelektrochemische Zellen wettbewerbsfähig werden könnten
    Science Highlight
    20.03.2023
    Grüner Wasserstoff: Wie photoelektrochemische Zellen wettbewerbsfähig werden könnten
    Mit Sonnenlicht lässt sich grüner Wasserstoff in photoelektrochemischen Zellen (PEC) direkt aus Wasser erzeugen. Bisher waren Systeme, die auf diesem 'direkten Ansatz' basieren, energetisch nicht wettbewerbsfähig. Die Bilanz ändert sich jedoch, sobald ein Teil des Wasserstoffs in PEC-Zellen in-situ für erwünschte Reaktionen genutzt wird. Dadurch lassen sich wertvolle Chemikalien für die chemische und pharmazeutische Industrie produzieren. Die Zeit für die Energie-Rückgewinnung des direkten Ansatztes mit der PEC-Zelle kann damit drastisch verkürzt werden, zeigt eine neue Studie aus dem HZB.
  • Perowskitsolarzellen durch Schlitzdüsenbeschichtung – ein Schritt zur industriellen Produktion
    Science Highlight
    16.03.2023
    Perowskitsolarzellen durch Schlitzdüsenbeschichtung – ein Schritt zur industriellen Produktion
    Solarzellen aus Metallhalogenid-Perowskiten erreichen hohe Wirkungsgrade und lassen sich mit wenig Energieaufwand aus flüssigen Tinten produzieren. Solche Verfahren untersucht ein Team um Prof. Dr. Eva Unger am Helmholtz-Zentrum Berlin. An der Röntgenquelle BESSY II hat die Gruppe nun gezeigt, wie wichtig die Zusammensetzung von Vorläufertinten für die Erzeugung qualitativ-hochwertiger FAPbI3-Perowskit-Dünnschichten ist. Die mit den besten Tinten hergestellten Solarzellen wurden ein Jahr im Außeneinsatz getestet und auf Minimodulgröße skaliert.
  • Super-Energiespeicher: Ladungstransport in MXenen untersucht
    Science Highlight
    13.03.2023
    Super-Energiespeicher: Ladungstransport in MXenen untersucht
    MXene können große Mengen elektrischer Energie speichern und lassen sich dabei sehr schnell auf- und entladen. Damit vereinen MXene die Vorteile von Batterien und Superkondensatoren und gelten als spannende neue Materialklasse für die Energiespeicherung: Das Material ist wie eine Art Blätterteig aufgebaut, die MXene-Schichten sind durch dünne Wasserfilme getrennt. Ein Team am HZB hat nun an der Röntgenquelle BESSY II untersucht, wie Protonen in diesen Wasserfilmen wandern und den Ladungstransport ermöglichen. Ihre Ergebnisse sind in der renommierten Fachzeitschrift Nature Communications veröffentlicht und könnten die Optimierung solcher Energiespeichermaterialien beschleunigen.