Hanwha-Q-Cells-Quantsol-Preise 2018

Preisträger des HQCQ 2018-Awards (von links: Alejandra Villanueva Tovar, Pavlo Perkhun, Erin Looney, Tom Veeken, Gizem Birant, Harald Reinhold).

Preisträger des HQCQ 2018-Awards (von links: Alejandra Villanueva Tovar, Pavlo Perkhun, Erin Looney, Tom Veeken, Gizem Birant, Harald Reinhold). © HZB

Sechs Nachwuchsforscherinnen und –forscher erhielten für ihre Photovoltaik-Lösungen einen Hanwha-Q-Cells-Quantsol-Preis. Dieser Award wird von den Organisatoren der internationalen Sommerschule Quantsol gemeinsam mit der Industrie vergeben.

Die “International Summer School on Photovoltaics and New Concepts of Quantum Solar Energy Conversion” (Quantsol) fand vom 2. bis 9. September 2018 zum elften Mal in Folge im österreichischen Hirschegg / Kleinwalsertal statt. Über 50 angehende Solarforscherinnen und -forscher aus 20 Ländern erhielten hier eine umfassende Einführung in Photovoltaik und solare Brennstofferzeugung. Experten von führenden Forschungsinstituten aus aller Welt stellten die grundlegenden Vorgänge zur Umwandlung von Solarenergie in chemische und elektrische Energien vor und zeigten Wege zu deren technischen Anwendung. Ausführlich diskutiert wurden auch neuere Materialien wie die vielversprechenden Perowskite oder Oxide für Wasserspaltung.

Wie im vergangen Jahr wurde der gemeinsam mit der Industrie ausgelobte Hanwha-Q-Cells-Quantsol-Preis (QHQC-Award 2018) in vier Kategorien vergeben. In den Teamkategorien gewonnen haben für die beste selbst gebaute Solarzelle Gizem Birant (Universität Hasselt, Belgien) und Alejandra Villanueva Tovar (HZB) und für die beste optische Simulation einer Perowskit-Silizium-Tandemsolarzelle Pavlo Perkhun (CINaM ‐ Centre Interdisciplinaire de Nanoscience de Marseille, Fr) sowie Harald Reinhold (Carl von Ossietzky Universität Oldenburg). In der Einzelkategorie ging der Preis für die aktivste Teilnahme an Erin Looney (MIT, USA) sowie an Tom Veeken (AMOLF, NL) für den mit dem Epi-Simulator produzierten besten Einkristall.

„Wir danken auch allen Helferinnen und Helfer aus dem HZB und der TU Ilmenau sowie beiden Forschungseinrichtungen, ohne die es nicht möglich gewesen wäre, eine qualitativ so hochwertige Schule zu organisieren und durchzuführen“, so Prof. Dr. Klaus Lips, der die Konferenz gemeinsam mit Prof. Dr. Thomas Hannappel, TU Ilmenau, seit nun schon elf Jahren organisiert. Aufgrund der großen Nachfrage sind für September 2019 und 2020 die nächsten Quantsol-Sommerschulen geplant.

red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Zwei Humboldt-Fellows am HZB
    Nachricht
    09.12.2024
    Zwei Humboldt-Fellows am HZB
    Zwei junge Wissenschaftler sind zurzeit als Humboldt-Postdoktoranden am HZB tätig. Kazuki Morita bringt seine Expertise in Modellierung und Datenanalyse in die Solarenergieforschung im Team von Prof. Antonio Abate ein. Qingping Wu ist Experte für Batterieforschung und arbeitet mit Prof. Yan Lu zusammen an Lithium-Metall-Batterien mit hoher Energiedichte.

  • Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Science Highlight
    05.12.2024
    Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Für die Produktion von Wasserstoff mit Elektrolyse werden Iridiumbasierte Katalysatoren benötigt. Nun zeigt ein Team am HZB und an der Lichtquelle ALBA, dass die neu entwickelten P2X-Katalysatoren, die mit nur einem Viertel des Iridiums auskommen, ebenso effizient und langzeitstabil sind wie die besten kommerziellen Katalysatoren. Messungen an BESSY II haben nun ans Licht gebracht, wie die besondere chemische Umgebung im P2X-Kat während der Elektrolyse die Wasserspaltung befördert.
  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.