Solarzellen und organische LEDs drucken

Das aus einer Kupferlösung aufgedruckte HySPRINT-Logo (Helmholtz Innovation Lab) symbolisiert, wie sich dünnste Materialschichten kostengünstig herstellen lassen. Mögliche Anwendungen sind Solarzellen, organische LEDs und Transitoren. Herstellung und

Das aus einer Kupferlösung aufgedruckte HySPRINT-Logo (Helmholtz Innovation Lab) symbolisiert, wie sich dünnste Materialschichten kostengünstig herstellen lassen. Mögliche Anwendungen sind Solarzellen, organische LEDs und Transitoren. Herstellung und © Humboldt-Universität zu Berlin/List-Kratochvil

Humboldt-Universität zu Berlin und Helmholtz-Zentrum Berlin gründen gemeinsames Labor und Forschergruppe „Generative Fertigungsprozesse für Hybride Bauelemente“.

Solarzellen, LEDs und Detektoren aus organischen und hybriden Halbleitern lassen sich einfach drucken und dabei sogar mit winzigen Nanostrukturen versehen, die ihre Funktionen verbessern. Die Entwicklung von preiswerten Druckverfahren für elektronische und optoelektronische Bauteile steht im Mittelpunkt der neuen gemeinsamen Forschergruppe und des gemeinsamen Labors des Helmholtz-Zentrums Berlin (HZB) und der Humboldt-Universität zu Berlin (HU).

In der neuen Forschergruppe kooperieren die HU-Arbeitsgruppe „Hybrid Devices“ unter der Leitung von Prof. Dr. Emil List-Kratochvil, die HZB-Nachwuchsgruppe von Dr. Eva Unger, das Helmholtz Innovation Lab HySPRINT und das von Prof. Dr. Rutger Schlatmann geleitete Kompetenzzentrum Photovoltaik Berlin (PVcomB) miteinander. Die Partner bauen ein Joint Lab an der Humboldt-Universität zu Berlin auf, das den Forschenden die Anschaffung und Nutzung komplementärer Laborinfrastrukturen für verschiedene Beschichtungsverfahren ermöglicht.

Prof. Emil List-Kratochvil ist Leiter der HU-Arbeitsgruppe „Hybrid Devices“ am IRIS Adlershof und beschäftigt sich seit 15 Jahren mit der Entwicklung von elektronischen und optoelektronischen Hybridbauteilen, ressourceneffizienten Abscheidungstechniken (Inkjetdruck) und in-situ Nanostrukturierungs- und Syntheseverfahren. Diese Expertise ergänzt die Zielsetzungen der HZB-Nachwuchsgruppe um Dr. Eva Unger. Sie will lösungsbasierte Herstellungsverfahren entwickeln, um Perowskit-Halbleiterschichten für Solarzellen auf größeren Flächen abzuscheiden. „Die neue Forschergruppe mit Herrn List-Kratochvil ist für uns ein großer Gewinn. Durch seine Erfahrungen in gedruckten elektronischen Bauteilen ist er für uns ein idealer Kooperationspartner“, sagt Unger.

Pilotlinie für Druck hybrider Bauelemente

Ihrem Ziel, im Rahmen des Helmholtz Innovation Lab HySPRINT großflächige hybride Tandem-Solarmodule zu entwickeln, ist die Forscherin mit ihrem Team in den letzten Monaten schon näher gekommen. Nun ist das Upscaling der Prozesse der nächste notwendige Schritt, um die Marktreife der neuartigen Solarzellen voranzutreiben. Für die Entwicklung industriell relevanter Herstellungsverfahren ist das Kompetenzzentrum für Photovoltaik (PVcomB) der geeignete Partner. Die gemeinsame Forschergruppe strebt den Aufbau einer Pilotlinie an, um Prototypen von hybriden Bauelementen zu entwickeln.

(sz)

  • Link kopieren

Das könnte Sie auch interessieren

  • Faszinierendes Fundstück wird zu wertvoller Wissensquelle
    Nachricht
    12.02.2026
    Faszinierendes Fundstück wird zu wertvoller Wissensquelle
    Das Bayerische Landesamt für Denkmalpflege (BLfD) hat ein besonderes Fundstück aus der mittleren Bronzezeit nach Berlin geschickt, um es mit modernsten Methoden zerstörungsfrei zu untersuchen: Es handelt sich um ein mehr als 3400 Jahre altes Bronzeschwert, das 2023 im schwäbischen Nördlingen bei archäologischen Grabungen zutage trat. Die Expertinnen und Experten konnten herausfinden, wie Griff und Klinge miteinander verbunden sind und wie die seltenen und gut erhaltenen Verzierungen am Knauf angefertigt wurden – und sich so den Handwerkstechniken im Süddeutschland der Bronzezeit annähern. Zum Einsatz kamen eine 3D-Computertomographie und Röntgendiffraktion zur Eigenspannungsanalyse am Helmholtz-Zentrum Berlin (HZB) sowie die Röntgenfluoreszenz-Spektroskopie bei einem von der Bundesanstalt für Materialforschung und -prüfung (BAM) betreuten Strahlrohr an BESSY II.
  • Topologische Überraschungen beim Element Kobalt
    Science Highlight
    11.02.2026
    Topologische Überraschungen beim Element Kobalt
    Das Element Kobalt gilt als typischer Ferromagnet ohne weitere Geheimnisse. Ein internationales Team unter der Leitung von Dr. Jaime Sánchez-Barriga (HZB) hat nun jedoch komplexe topologische Merkmale in der elektronischen Struktur von Kobalt entdeckt. Spin-aufgelöste Messungen der Bandstruktur (Spin-ARPES) an BESSY II zeigten verschränkte Energiebänder, die sich selbst bei Raumtemperatur entlang ausgedehnter Pfade in bestimmten kristallographischen Richtungen kreuzen. Dadurch kann Kobalt als hochgradig abstimmbare und unerwartet reichhaltige topologische Plattform verstanden werden. Dies eröffnet Perspektiven, um magnetische topologische Zustände in Kobalt für künftige Informationstechnologien zu nutzen.
  • MXene als Energiespeicher: Vielseitiger als gedacht
    Science Highlight
    03.02.2026
    MXene als Energiespeicher: Vielseitiger als gedacht
    MXene-Materialien könnten sich für eine neue Technologie eignen, um elektrische Ladungen zu speichern. Die Ladungsspeicherung war jedoch bislang in MXenen nicht vollständig verstanden. Ein Team am HZB hat erstmals einzelne MXene-Flocken untersucht, um diese Prozesse im Detail aufzuklären. Mit dem in situ-Röntgenmikroskop „MYSTIIC” an BESSY II gelang es ihnen, die chemischen Zustände von Titanatomen auf den Oberflächen der MXene-Flocken zu kartieren. Die Ergebnisse zeigen, dass es zwei unterschiedliche Redox-Reaktionen gibt, die vom jeweils verwendeten Elektrolyten abhängen. Die Studie schafft eine Grundlage für die Optimierung von MXene-Materialien als pseudokapazitive Energiespeicher.