Solarzellen und organische LEDs drucken

Das aus einer Kupferlösung aufgedruckte HySPRINT-Logo (Helmholtz Innovation Lab) symbolisiert, wie sich dünnste Materialschichten kostengünstig herstellen lassen. Mögliche Anwendungen sind Solarzellen, organische LEDs und Transitoren. Herstellung und

Das aus einer Kupferlösung aufgedruckte HySPRINT-Logo (Helmholtz Innovation Lab) symbolisiert, wie sich dünnste Materialschichten kostengünstig herstellen lassen. Mögliche Anwendungen sind Solarzellen, organische LEDs und Transitoren. Herstellung und © Humboldt-Universität zu Berlin/List-Kratochvil

Humboldt-Universität zu Berlin und Helmholtz-Zentrum Berlin gründen gemeinsames Labor und Forschergruppe „Generative Fertigungsprozesse für Hybride Bauelemente“.

Solarzellen, LEDs und Detektoren aus organischen und hybriden Halbleitern lassen sich einfach drucken und dabei sogar mit winzigen Nanostrukturen versehen, die ihre Funktionen verbessern. Die Entwicklung von preiswerten Druckverfahren für elektronische und optoelektronische Bauteile steht im Mittelpunkt der neuen gemeinsamen Forschergruppe und des gemeinsamen Labors des Helmholtz-Zentrums Berlin (HZB) und der Humboldt-Universität zu Berlin (HU).

In der neuen Forschergruppe kooperieren die HU-Arbeitsgruppe „Hybrid Devices“ unter der Leitung von Prof. Dr. Emil List-Kratochvil, die HZB-Nachwuchsgruppe von Dr. Eva Unger, das Helmholtz Innovation Lab HySPRINT und das von Prof. Dr. Rutger Schlatmann geleitete Kompetenzzentrum Photovoltaik Berlin (PVcomB) miteinander. Die Partner bauen ein Joint Lab an der Humboldt-Universität zu Berlin auf, das den Forschenden die Anschaffung und Nutzung komplementärer Laborinfrastrukturen für verschiedene Beschichtungsverfahren ermöglicht.

Prof. Emil List-Kratochvil ist Leiter der HU-Arbeitsgruppe „Hybrid Devices“ am IRIS Adlershof und beschäftigt sich seit 15 Jahren mit der Entwicklung von elektronischen und optoelektronischen Hybridbauteilen, ressourceneffizienten Abscheidungstechniken (Inkjetdruck) und in-situ Nanostrukturierungs- und Syntheseverfahren. Diese Expertise ergänzt die Zielsetzungen der HZB-Nachwuchsgruppe um Dr. Eva Unger. Sie will lösungsbasierte Herstellungsverfahren entwickeln, um Perowskit-Halbleiterschichten für Solarzellen auf größeren Flächen abzuscheiden. „Die neue Forschergruppe mit Herrn List-Kratochvil ist für uns ein großer Gewinn. Durch seine Erfahrungen in gedruckten elektronischen Bauteilen ist er für uns ein idealer Kooperationspartner“, sagt Unger.

Pilotlinie für Druck hybrider Bauelemente

Ihrem Ziel, im Rahmen des Helmholtz Innovation Lab HySPRINT großflächige hybride Tandem-Solarmodule zu entwickeln, ist die Forscherin mit ihrem Team in den letzten Monaten schon näher gekommen. Nun ist das Upscaling der Prozesse der nächste notwendige Schritt, um die Marktreife der neuartigen Solarzellen voranzutreiben. Für die Entwicklung industriell relevanter Herstellungsverfahren ist das Kompetenzzentrum für Photovoltaik (PVcomB) der geeignete Partner. Die gemeinsame Forschergruppe strebt den Aufbau einer Pilotlinie an, um Prototypen von hybriden Bauelementen zu entwickeln.

(sz)

  • Link kopieren

Das könnte Sie auch interessieren

  • Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Science Highlight
    28.03.2025
    Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Im Jahr 2023 erzeugten Photovoltaikanlagen weltweit mehr als 5% der elektrischen Energie und die installierte Leistung verdoppelt sich alle zwei bis drei Jahre. Optische Technologien können die Effizienz von Solarmodulen weiter steigern und neue Einsatzbereiche erschließen, etwa in Form von ästhetisch ansprechenden, farbigen Solarmodulen für Fassaden. Nun geben 27 Fachleute einen umfassenden Überblick über den Stand der Forschung und eine Einschätzung, welche Innovationen besonders zielführend sind. Der Bericht, der auch für Entscheidungsträger*innen in der Forschungsförderung interessant ist, wurde von Prof. Christiane Becker und Dr. Klaus Jäger aus dem HZB koordiniert.
  • Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Science Highlight
    27.03.2025
    Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.
  • Samira Aden ist Mitglied der ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Arbeitsgruppe.
    Nachricht
    26.03.2025
    Samira Aden ist Mitglied der ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Arbeitsgruppe.
    Samira Jama Aden, Architektin in der Beratungstelle für bauwerkintegrierte Photovoltaik (BAIP), ist der Arbeitsgruppe “Environmental, Social and Governance (ESG)” der ETIP PV - The European Technology & Innovation Platform for Photovoltaics beigetreten.