In Schwerelosigkeit Metalle geschäumt

Röntgenbild eines flüssigen Metallschaums in Schwerelosigkeit

Röntgenbild eines flüssigen Metallschaums in Schwerelosigkeit

Röntgenbild eines flüssigen Metallschaums bei 1,8-facher Erdanziehung

Röntgenbild eines flüssigen Metallschaums bei 1,8-facher Erdanziehung

Erfolgreich haben drei Forscher des Berliner Hahn-Meitner-Instituts (HMI) in Schwerelosigkeit untersucht, wie die Erdanziehung die Eigenschaften eines Metallschaums beeinflusst. Sie haben ihre Experimente in einem umgebauten Airbus 300 durchgeführt. Das Flugzeug fliegt auf einer Art Buckelbahn. Dabei steigt es immer wieder zunächst steil auf, um danach im freien Fall entlang einer Wurfparabel zu fliegen. Während eines solchen Fluges herrscht immer wieder kurzzeitig fast doppelte Erdanziehung, die von einer 20 Sekunden dauernden Phase der Schwerelosigkeit abgelöst wird.

Erfolgreich haben drei Forscher des Berliner Hahn-Meitner-Instituts (HMI) in Schwerelosigkeit untersucht, wie die Erdanziehung die Eigenschaften eines Metallschaums beeinflusst. Sie haben ihre Experimente in einem umgebauten Airbus 300 durchgeführt. Das Flugzeug fliegt auf einer Art Buckelbahn. Dabei steigt es immer wieder zunächst steil auf, um danach im freien Fall entlang einer Wurfparabel zu fliegen. Während eines solchen Fluges herrscht immer wieder kurzzeitig fast doppelte Erdanziehung, die von einer 20 Sekunden dauernden Phase der Schwerelosigkeit abgelöst wird.

Für ihre Versuche haben die Wissenschaftler ein transportables Labor in der Größe eines Umzugskartons gebaut. Darin: ein Ofen, in dem der Metallschaum erzeugt wird und eine Röntgenanlage, die die Evolution des Schaums festhält. Die mitgebrachten Filme zeigen, was mit dem flüssigen Schaum während des Fluges passiert: bei starker Erdanziehung bildet sich am unteren Rand des Schaums ein großer Tropfen flüssigen Metalls. In Schwerelosigkeit verschwindet der Tropfen sofort - seine Flüssigkeit verteilt sich gleichmäßig über den gesamten Schaum.

Metallschaum soll einer der Werkstoffe der Zukunft werden: leicht und zugleich stabil könnte er im Auto oder Flugzeug helfen, Gewicht zu sparen ohne dass die Sicherheit leidet. Die Herstellung der schaumförmigen Metalle erinnert an Kuchenbacken: man vermischt Metallpulver mit einem Treibmittel, presst die Mischung zusammen und heizt sie auf. Das Metall wird flüssig und das Treibmittel gibt ein Gas frei, welches die Blasen entstehen lässt. Kühlt man das Ganze ab, hat man den fertigen Metallschaum. Forscher interessieren sich besonders für die Zeit, in der der Schaum noch flüssig ist, denn diese entscheidet über die Eigenschaften des Schaums. Zwei Effekte spielen dabei eine besondere Rolle: Drainage und Koaleszenz. HMI-Forscher Francisco Garcia-Moreno erklärt ihre Bedeutung am Beispiel eines Bierschaums: "Zum einen kann man beobachten, wie das Bier im Schaum nach unten fließt, so dass die Wände der Schaumbläschen immer dünner werden. Das ist Drainage. Zum anderen platzen oft Wände zwischen zwei Bläschen, so dass ein größeres Bläschen entsteht. Das ist Koaleszenz". Während des Airbus-Fluges hat die Zeit gerade gereicht, die Drainage zu beobachten. Die Filme des wandernden Metalltropfens sind das erste Ergebnis. Eine genaue wissenschaftliche Auswertung wird folgen.

Aber der Flug hatte noch ein weiteres Ziel: die Ausrüstung sollte für ein weite-res spektakuläres Experiment getestet werden, welches im Frühjahr 2008 stattfinden soll. Dann wird die ganze Apparatur im Rahmen der MASER 11-Mission in einer unbemannten Rakete der schwedischen Raumfahrtagentur SSC sechs Minuten in Schwerelosigkeit fliegen. Bei diesem Experiment wird man auch die Koaleszenz untersuchen können. Da die Geräte auf den Raketenflug hin geplant werden müssen, haben die schwedischen Kollegen von Anfang an beim Aufbau und auch während des Parabelfluges im Airbus geholfen. Einmal haben sie es sogar geschafft, die Anlage in einer fünfminütigen Pause zwischen zwei Phasen der Schwerelosigkeit zu reparieren. Sie wissen jetzt, was sie tun müssen, damit ein ähnliches Problem nicht auch in der Rakete entsteht.

Nicht alle Filme, die die Forscher mitgebracht haben, zeigen aufgehende Metallschäume. Garcia-Moreno und seine Kollegen Catalina Jimenez und Manas Mukherjee konnten nämlich auch einige Phasen der Schwerelosigkeit nutzen, um das ungewohnte Gefühl zu genießen und einander beim Schweben und Purzelbäumeschlagen zu filmen.

Der Flug fand im Rahmen eines Projekts der Europäischen Raumfahrtagentur ESA statt und wurde auch von dieser finanziert. Das Flugzeug wird von der französischen Firma Novespace betrieben.

  • Link kopieren

Das könnte Sie auch interessieren

  • Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Science Highlight
    28.03.2025
    Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Im Jahr 2023 erzeugten Photovoltaikanlagen weltweit mehr als 5% der elektrischen Energie und die installierte Leistung verdoppelt sich alle zwei bis drei Jahre. Optische Technologien können die Effizienz von Solarmodulen weiter steigern und neue Einsatzbereiche erschließen, etwa in Form von ästhetisch ansprechenden, farbigen Solarmodulen für Fassaden. Nun geben 27 Fachleute einen umfassenden Überblick über den Stand der Forschung und eine Einschätzung, welche Innovationen besonders zielführend sind. Der Bericht, der auch für Entscheidungsträger*innen in der Forschungsförderung interessant ist, wurde von Prof. Christiane Becker und Dr. Klaus Jäger aus dem HZB koordiniert.
  • Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Science Highlight
    27.03.2025
    Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.
  • BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Science Highlight
    25.03.2025
    BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Eine blütenförmige Struktur aus einer Nickel-Eisen-Legierung, die nur wenige Mikrometer misst, kann Magnetfelder lokal verstärken. Der Effekt lässt sich durch die Geometrie und Anzahl der „Blütenblätter“ steuern. Das magnetische Metamaterial wurde von der Gruppe um Dr. Anna Palau am Institut de Ciencia de Materials de Barcelona (ICMAB) mit Partnern aus dem CHIST-ERA MetaMagIC-Projekts entwickelt und nun an BESSY II in Zusammenarbeit mit Dr. Sergio Valencia untersucht. Die Mikroblüten ermöglichen vielfältige Anwendungen: Sie können die Empfindlichkeit magnetischer Sensoren erhöhen, die Energie für die Erzeugung lokaler Magnetfelder reduzieren, und am PEEM-Messplatz an BESSY II die Messung von Proben unter deutlich höheren Magnetfeldern ermöglichen.