50 Jahre Feldionenmikroskopie

Erwin Müller und sein Feldionenmikroskop, Quelle:"Archiv zur Geschichte der Max-Plank-Gesellschaft, Berlin-Dahlem"

Erwin Müller und sein Feldionenmikroskop, Quelle:"Archiv zur Geschichte der Max-Plank-Gesellschaft, Berlin-Dahlem"

In seiner Heimatstadt würdigt das 47. Internationale Feld-Emissions-Symposium, das vom Hahn-Meitner-Institut in Berlin-Wannsee organisiert wird, ganz besonders die wegweisenden Arbeiten Erwin W. Müllers - schließlich feiert nicht nur das Feldionenmikroskop seinen 50. Geburtstag, der in Berlin-Treptow geborene Wissenschaftler wäre in diesem Jahr auch 90 Jahre alt geworden.

Dass einzelne Atome sichtbar sind, ist für Wissenschaftler heute selbstverständlich. Aber es ist noch gar nicht so lange her, da träumten Forscher noch davon, die kleinen Teilchen mit eigenen Augen sehen zu können. Es war ein deutscher Physiker, der den Traum vor 50 Jahren Wirklichkeit werden ließ: Erwin W. Müller lieferte 1951 erstmals den Beweis dafür, dass es tatsächlich möglich ist, einzelne Atome zu bestaunen. Der gebürtige Berliner hatte das Feldionenmikroskop (FIM) entwickelt: Mit ihm waren atomare Auflösungen von metallenen Oberflächen Realität geworden. Doch das, was eine kleine Revolution auf dem Gebiet der Optik und der Oberflächenwissenschaften bedeutete, wurde in der technischen Literatur zu Beginn der fünfziger Jahre bloß als ein kleiner Schritt in der Evolution dargestellt.

Große Ehre wird dem früheren Berliner Professor jedoch vom 29. Juli bis zum 3. August 2001 zuteil. In seiner Heimatstadt würdigt das 47. Internationale Feld-Emissions-Symposium, das vom Hahn-Meitner-Institut in Berlin-Wannsee organisiert wird, ganz besonders die wegweisenden Arbeiten Erwin W. Müllers - schließlich feiert nicht nur das Feldionenmikroskop seinen 50. Geburtstag, der in Berlin-Treptow geborene Wissenschaftler wäre in diesem Jahr auch 90 Jahre alt geworden. Und noch eine Entwicklung Müllers begeht einen Jahrestag: Das Feldelektronenmikroskop wird 65.

Mit diesem optischen Apparat machte Müller die Fachwelt 1936, ein Jahr nach Abschluss seines Physik-Studiums an der Technischen Universität Berlin, erstmals auf sich aufmerksam. Neben dem Studium hatte Erwin W. Müller auch das Physikalische Kolloquium der Friedrich-Wilhelm-Universität (heute Humboldt-Universität) besucht, wo er großen Physikern wie Albert Einstein, Max Planck, Max von Laue, Walther Hermann Nernst und auch Gustav Hertz begegnete. Bei Hertz sprach Müller wegen eines Themas für seine Dissertation vor und stieß auf offene Ohren. Allerdings hatte Gustav Hertz aus Protest gegen die nationalsozialistische Diskriminierungspolitik seinen universitären Lehrstuhl geräumt und die Direktorenstelle im neuen Berliner Forschungslabor der Firma Siemens angetreten. Müller, den er für eine Arbeit auf dem Gebiet der Feldelektronen-Emissionsforschung begeistern konnte, nahm er gleich mit zu Siemens.

Das Hauptproblem der damaligen Feldemissionsforschung war die Herstellung einer Kathode in Form eines dünnen Drahts mit einer scharfen Spitze, die eine glatte, kraterfreie Oberfläche hatte. Denn abgebildet wird im Feldelektronenmikroskop nicht ein Objekt, das in den Strahlengang gebracht wird, sondern die metallene Spitze selbst. Aus der spitzenförmigen Kathode treten Elektronen aus, die auf den Leuchtschirm projiziert werden. Auf die vorhandenen Probleme - keine glatte Oberfläche und damit keine Reproduzierbarkeit der Ergebnisse - stieß auch Erwin W. Müller während seiner Doktorarbeit. Er hatte jedoch eine Lösung parat: Er "glättete" die Spitze, indem er sie zunächst erwärmte - die Spitze nahm durch die Wärme eine gleichmäßige kalottenförmige Oberfläche an - und legte an die wieder erkaltete Kathode eine hinreichend große Spannung an. Die Elektronen strömten reproduzierbar aus und erzeugten auf dem Leuchtschirm ein Abbild der Spitze. Das Feldelektronenmikroskop, ein Projektionsgerät, mit dem sich nahezu millionenfach vergrößerte Abbildungen der Spitze erzeugen lassen, war geboren.

Die Bilder allerdings, so meinte Müller, seien noch verbesserungsfähig und so widmete er sich 1951 als Mitarbeiter am heutigen Fritz-Haber-Institut der Max-Planck-Gesellschaft (damals noch Kaiser-Wilhelm-Institut für Physikalische Chemie) und als Professor der Freien Universität Berlin der Weiterentwicklung des Feldelektronenmikroskops. Statt Elektronen nutzte er diesmal Heliumionen zur Abbildung, die eine höhere Auflösung liefern, weil sie schwerer sind als Elektronen und sich deshalb auch weniger bewegen: Ein Meilenstein der Optik und der Oberflächenwissenschaften - dank des Feldionenmikroskops waren erstmals Atome von Metalloberflächen sichtbar.

Aus der Methode Erwin W. Müllers, der nach Entwicklung des FIM einen Lehrauftrag an der Universität von Pennsylvania in den USA annahm, ist in den vergangenen 50 Jahren ein weites Anwendungsgebiet entstanden. Die FIM, die als eine Technik zur Visualisierung von metallenen Oberflächen begann, hat sich zu einer analytischen Methode entwickelt, mit der sich die chemische Zusammensetzung im Nanometerbereich messen und der Aufbau von winzigsten Kristallen im Raum darstellen läßt. So können die Forscher mit dem FIM beispielsweise das Kristallwachstum beobachten und dabei möglichen Kristallbaufehlern auf die Schliche kommen. Auch gelang es den Wissenschaftlern durch den Einsatz des FIM, Oberflächenreaktionen zu verstehen und zu erklären, was insbesondere für das Verständnis von katalytischen Reaktionen von großer Bedeutung ist. Viele chemische Prozesse wären ohne den Einsatz von Katalysatoren, wie beim Pkw, überhaupt nicht möglich, denn oft eignen sich nur Stoffe mit ganz bestimmten Oberflächen als Katalysator. Einen wesentlichen Beitrag leisteten Müllers Arbeiten zum FIM auch bei der Entwicklung des Raster-Tunnelmikroskops, für das die beiden deutschen Physiker Heinrich Rohrer und Gerd Binning 1986 mit dem Nobelpreis ausgezeichnet wurden.

Auf dem 47. Internationalen Feld-Emissions-Symposium berichten Wissenschaftler über ihre aktuellen Arbeiten auf dem Gebiet der analytischen Mikroskopie. Um den Vater des Feldionenmikroskops zu würdigen, startet die Konferenz im "Palais Am Festungsgraben" in Berlin-Mitte mit Vorträgen über die historische Entwicklung, die an Erwin Müller und die Anfänge der Feld-Emissions-Forschung erinnern. Dr. Nelia Wanderka, vom Hahn-Meitner-Institut, das die internationale Tagung veranstaltet, erwartet rund 140 Teilnehmer aus der ganzen Welt.

  • Link kopieren

Das könnte Sie auch interessieren

  • Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Science Highlight
    27.03.2025
    Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.
  • BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Science Highlight
    25.03.2025
    BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Eine blütenförmige Struktur aus einer Nickel-Eisen-Legierung, die nur wenige Mikrometer misst, kann Magnetfelder lokal verstärken. Der Effekt lässt sich durch die Geometrie und Anzahl der „Blütenblätter“ steuern. Das magnetische Metamaterial wurde von der Gruppe um Dr. Anna Palau am Institut de Ciencia de Materials de Barcelona (ICMAB) mit Partnern aus dem CHIST-ERA MetaMagIC-Projekts entwickelt und nun an BESSY II in Zusammenarbeit mit Dr. Sergio Valencia untersucht. Die Mikroblüten ermöglichen vielfältige Anwendungen: Sie können die Empfindlichkeit magnetischer Sensoren erhöhen, die Energie für die Erzeugung lokaler Magnetfelder reduzieren, und am PEEM-Messplatz an BESSY II die Messung von Proben unter deutlich höheren Magnetfeldern ermöglichen.
  • Die Zukunft der Energie: Empfehlungen der Wissenschaft an die Politik
    Nachricht
    21.03.2025
    Die Zukunft der Energie: Empfehlungen der Wissenschaft an die Politik
    Expert*innen des HZB haben ihr Fachwissen in den hier kurz vorgestellten Positionspapieren eingebracht.
    Zu den Themen gehören die Entwicklung innovativer Materialien für eine nachhaltige Energieversorgung und die Kreislaufwirtschaft.
    Fachleute aus verschiedenen Bereichen haben gemeinsam Lösungen und Handlungsempfehlungen formuliert.