HMI und BESSY feiern Fertigstellung von zwei Neubauten in Berlin-Adlershof

Das Hahn-Meitner-Institut (HMI) und die Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung (BESSY) feiern am 4. Oktober um 14 Uhr mit einer Festveranstaltung die Einweihung von zwei Anbauten am Hauptgebäude neben dem Elektronenspeicherring von BESSY. Die Neubauten werden auf 2575 Quadratmetern Nutzfläche einen Hörsaal sowie Bibliotheks-, Labor- und Büroräume für beide Forschungseinrichtungen aufnehmen.


Die beiden jetzt fertiggestellten Anbauten verwirklichen eine schon ursprünglich angelegte Ausbaustufe an den Stirnseiten des vierstöckigen Hauptgebäudes neben der Synchrotronstrahlungsquelle von BESSY. Baubeginn für die neuen Gebäude war im Dezember 1999; an den Gesamtbaukosten von 19 Millionen Mark beteiligte sich die Europäische Gemeinschaft zu rund 60 Prozent.


Das Hahn-Meitner-Institut mit dem Hauptsitz in Berlin-Wannsee verstärkt mit seinem Gebäudeteil die Präsenz im Wissenschafts- und Wirtschaftsstandort Adlershof. Durch die Neubauten verbessern sich insbesondere die Möglichkeiten der Zusammenarbeit von BESSY und HMI auf dem Gebiet der Strukturforschung. Auch für geplante neue gemeinsame Forschungsvorhaben, wie dem „Free Electron Laser (FEL)“, wurden wichtige Voraussetzungen geschaffen.


In der Festkörperforschung ergänzt sich die Nutzung der BESSY-Synchrotronstrahlung mit Methoden im Hahn-Meitner-Institut: der Nutzung der Neutronen-Strahlung des Forschungsreaktors und der Ionen-Strahlung des Teilchenbeschleunigers ISL. Die Kombination der drei Sonden eröffnet Strukturforschern weltweit die einmalige Möglichkeit, am selben Ort alle Sonden einzusetzen, die für Untersuchungen der Materie auf atomarer Skala wichtig sind.


Das Hahn-Meitner-Institut (HMI) ist Mitglied der Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren. Die Berliner Elektronenspeicherringgesellschaft für Synchrotronstrahlung (BESSY) gehört der Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz an.

  • Link kopieren

Das könnte Sie auch interessieren

  • Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Science Highlight
    28.03.2025
    Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Im Jahr 2023 erzeugten Photovoltaikanlagen weltweit mehr als 5% der elektrischen Energie und die installierte Leistung verdoppelt sich alle zwei bis drei Jahre. Optische Technologien können die Effizienz von Solarmodulen weiter steigern und neue Einsatzbereiche erschließen, etwa in Form von ästhetisch ansprechenden, farbigen Solarmodulen für Fassaden. Nun geben 27 Fachleute einen umfassenden Überblick über den Stand der Forschung und eine Einschätzung, welche Innovationen besonders zielführend sind. Der Bericht, der auch für Entscheidungsträger*innen in der Forschungsförderung interessant ist, wurde von Prof. Christiane Becker und Dr. Klaus Jäger aus dem HZB koordiniert.
  • Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Science Highlight
    27.03.2025
    Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.
  • BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Science Highlight
    25.03.2025
    BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Eine blütenförmige Struktur aus einer Nickel-Eisen-Legierung, die nur wenige Mikrometer misst, kann Magnetfelder lokal verstärken. Der Effekt lässt sich durch die Geometrie und Anzahl der „Blütenblätter“ steuern. Das magnetische Metamaterial wurde von der Gruppe um Dr. Anna Palau am Institut de Ciencia de Materials de Barcelona (ICMAB) mit Partnern aus dem CHIST-ERA MetaMagIC-Projekts entwickelt und nun an BESSY II in Zusammenarbeit mit Dr. Sergio Valencia untersucht. Die Mikroblüten ermöglichen vielfältige Anwendungen: Sie können die Empfindlichkeit magnetischer Sensoren erhöhen, die Energie für die Erzeugung lokaler Magnetfelder reduzieren, und am PEEM-Messplatz an BESSY II die Messung von Proben unter deutlich höheren Magnetfeldern ermöglichen.